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Abstract
Claims about distributions of time series are often unproven assertions instead
of substantiated conclusions for lack of hypotheses testing tools. In this work,
Kolmogorov–Smirnov type simultaneous confidence bands (SCBs) are constructed
based on simple random samples (SRSs) drawn from realizations of time series,
togetherwith smoothSCBsusingkernel distribution estimator (KDE) insteadof empir-
ical cumulative distribution function of the SRS. All SCBs are shown to enjoy the same
limiting distribution as the standard Kolmogorov–Smirnov for i.i.d. sample, which is
validated in simulation experiments on various time series. Computing these SCBs for
the standardized S&P 500 daily returns data leads to some rather unexpected findings,
i.e., student’s t-distributions with degrees of freedom no less than 3 and the normal
distribution are all acceptable versions of the standardized daily returns series’ distri-
bution, with proper rescaling. These findings present challenges to the long held belief
that daily financial returns distribution is fat-tailed and leptokurtic.
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1 Introduction

Probability distribution function contains complete information about a random quan-
tity, such as financial returns. Claims about probability distribution are routinely made
such as skewness vs. symmetry, normality, fat-tailedness, etc., often as baseless asser-
tions. One such unsubstantiated claim is that distribution function of daily financial
returns is fat-tailed and leptokurtic (Francq and Zakoian 2010, p 9, (v)), because its
empirical distribution does not “look” normal, its sample kurtosis is much greater than
3, and classic normality tests lead to rejection.

Take, for example, the S&P 500 daily returns from January 3, 1950 to August 28,
2018, shown in Fig. 1(a). This realization of length 17,276 is visibly not stationary,
withmuchwider range of variation towards the last 10 years, hence a standardized (and
therefore stationary) returns series by adjusting for trend in variance is used for further
analysis, shown inFig. 1(b). Figure 2 shows the empirical distribution function together
with 99% Kolmogorov–Smirnov simultaneous confidence band (SCB) based on the
standardized returns and a normal distribution function with the mean and variance
equal to the sample mean and sample variance. This figure is a nice illustration of “not
looking normal ” as the normal curve falls outside of the SCB.

Classic normality tests such as the previous one based on Kolmogorov–Smirnov
SCB, however, are suitable only for i.i.d. observations, hence it seems that a direct
and reliable testing procedure on the shape of time series distribution is called for to
decide on the validity of various presumptions. For the aforementioned S&P 500 daily
returns data, 95%Kolmogorov–Smirnov type SCBs based on a simple random sample

Fig. 1 (a) Scatter plot of
{yt }17276t=1 , the S&P 500 daily
returns, January 3, 1950–August
28, 2018; (b) scatter plot of the
standardized returns {xt }17276t=1

(a)

(b)
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Kolmogorov–Smirnov simultaneous confidence bands for time… 1017

Fig. 2 The standardizedS&P500daily returns {xt }17276t=1 .Dotted line—FN , solid lines—99%Kolmogorov–
Smirnov SCBs, thick line—normal cdf with mean and variance equal to the sample mean and sample
variance of {xt }17276t=1

(SRS) of much smaller size 200, defined in (7) and (9), contain rescaled normal and
student’s t-distributions of various degrees of freedom entirely, see Fig. 3. These SCBs
are asymptotically correct according to Corollary 1 in the next section, thus any null
hypothesis of normal or t-distribution for the S&P 500 daily returns is not rejectable
at significance level α = 0.05.

Given such example, consider now a stationary real valued time series {xt }Nt=1 where
N denotes the sample size and the xt ’s are continuous measurements, such as daily
stock returns or monthly number of traffic accidents. In addition to the dependence
structure, the stationary distribution function F (·) of xt also provides useful informa-
tion for making inference. One can estimate the unknown continuous function F (·)
by the following empirical cumulative distribution function (cdf):

FN (x) = N−1
N∑

t=1

I (xt ≤ x) , x ∈ R.

This estimator FN (·) converges to F (·) at the rate of N−1/2 as N → ∞ (see
Lemma 4), but the limiting process distribution not only depends on F (·) but also
the autocovariance structure of {I (xt ≤ x)}Nt=1. Thus it is impossible to obtain a
Kolmogorov–Smirnov type distribution free SCB for F (·) based on FN (·).

To overcome this difficulty, one can draw a SRS X1, . . . , Xn with a smaller size
n � N from the time series {xt }Nt=1, and define the empirical distribution function
Fn(x) as

Fn (x) = n−1
n∑

i=1

I (Xi ≤ x) , x ∈ R.
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1018 J. Li et al.

(a) (b)

(c) (d)

Fig. 3 The finite population distribution function FN (thick line), smooth KDE and its accompanying
corrected 95% SCBs (solid), empirical cdf and its accompanying corrected 95% SCBs (dashed) for the
standardized S&P 500 daily returns {xt }17276t=1 using SRS of size n = 200. The dotted line in four plots is:
(a) rescaled t-distribution with degree of freedom 3; (b) rescaled t-distribution with degree of freedom 4;
(c) rescaled t-distribution with degree of freedom 200; (d) normal distribution

Had the observations X1, . . . , Xn been independent, the well-known Donsker’s
Theorem would entail that in uniform metric on the cadlag space D (−∞,∞)

n1/2 {Fn (·) − F (·)} d→ B {F (·)} , (1)

in which B (t) denotes the Brownian bridge: B (t) = W (t) − tW (1) , t ∈ [0, 1],
withW (t) , 0 ≤ t ≤ 1 being the Wiener process. Therefore, the classic Kolmogorov–
Smirnov asymptotic simultaneous confidence band (SCB) for F (·) of level 1 − α

would be:

[
max

(
Fn(x) − n−1/2L1−α, 0

)
, min

(
Fn(x) + n−1/2L1−α, 1

)]
, x ∈ R,
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Table 1 Quantiles L1−α for the
Kolmogorov distribution

α = 0.01 α = 0.05 α = 0.1 α = 0.2

1.63 1.36 1.22 1.07

where L1−α is the (1 − α)-th quantile of the maximal absolute value of B (t), i.e.,

P

[
sup

t∈[0,1]
|B (t)| > L1−α

]
= α,∀α ∈ (0, 1) . (2)

Some commonly used values of L1−α are listed in Table 1.
For a SRS X1, . . . , Xn drawn from the time series x1, . . . , xN without replacement,

a variant of (1) holds in spite of dependence, under Assumptions (A1) and (A3) in the
next section. To be more precise, one considers the time series realization x1, . . . , xNk

together with the SRS X1, . . . , Xnk drawn from it, as being part of an infinite sequence
of experiments k = 1, 2, . . . ,∞, where for each k, Nk and nk form one experiment
and grow to infinity along the way in sync: limk→∞ min (nk, Nk − nk) = ∞. Denote
a sequence of time series realizations {πk}∞k=1, πk = {x1, x2, . . . , xNk

}
together with

its finite population distribution function

FNk (x) = N−1
k

Nk∑

i=1

I (xi ≤ x) , x ∈ R, (3)

and the empirical cumulative distribution function (ECDF) based on X1, . . . , Xnk

Fnk (x) = n−1
k

nk∑

i=1

I (Xi ≤ x) , x ∈ R. (4)

Making use of the finite population asymptotics in Rosén (1964), we will establish
the asymptotics of supx∈R

∣∣FNk (x) − Fnk (x)
∣∣ and supx∈R

∣∣F(x) − Fnk (x)
∣∣, which are

employed to construct a Kolmogorov–Smirnov asymptotic SCB for F (·) based on
Fnk (·).

For independent and identically distributed random sample, Yamato (1973), Reiss
(1981), Falk (1985), Cheng and Peng (2002), and more recently Liu and Yang (2008),
Xue and Wang (2010), Wang et al. (2013), Wang et al. (2016) had all argued that a
smoothed version of ECDF is more preferable, since the smoothed estimator shares
the smoothness feature with the true distribution function F (·), while the ECDF is a
step function. The kernel distribution estimator (KDE) for F (·) is defined as:

F̂k(x) =
∫ x

−∞
n−1
k

nk∑

i=1

Kh (u − Xi ) du, x ∈ R, (5)
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1020 J. Li et al.

where h = hnk > 0 is the bandwidth and K is a kernel function, and Kh (u) =
K (u/h) /h. A Kolmogorov–Smirnov asymptotic SCB for F (·) based on F̂k (·) will
also be established, which is smooth.

In the statistics arsenal, SCB is a versatile tool for making inference on the entirety
of a curve or function, and has been used in various contexts, which includes non-
parametric regression: Song and Yang (2009), Wang and Yang (2009), Cai and Yang
(2015), Zhang and Yang (2018); semiparametric dimension reduction: Gu and Yang
(2015), Zheng et al. (2016); functional data analysis: Cardot and Josserand (2011),
Degras (2011), Cao et al. (2012), Ma et al. (2012), Cardot et al. (2013), Song et al.
(2014), Zheng et al. (2014), Gu et al. (2014), Cao et al. (2016); distribution function
estimation for time series error: Wang et al. (2014), Kong et al. (2018).

Throughout this paper, one denotes themaximal deviation between two distribution
functions G1 (·) and G2 (·) as

D (G1,G2) = ‖G1 − G2‖∞ = sup
x

|G1(x) − G2(x)| . (6)

A finite population version of Donsker’s Theorem, Theorem 1 states that

lk
{
Fnk (·) − FNk (·)} d→ B {F (·)} ,

in which lk =
(
n−1
k − N−1

k

)−1/2 = n1/2k

(
fpck

)−1/2 is a finite population corrected

scale factor similar to n1/2k for an i.i.d. sample of size nk , with fpck = 1 − nk/Nk

the finite population correction (fpc) factor. The Assumption (A4) that nk = o (Nk)

and Lemma 4 then ensure that D
(
FNk , F

) = Op

(
N−1/2
k

)
= op

(
n−1/2
k

)
and

limk→∞ n−1/2
k /l−1

k = 1, so both lk
{
Fnk (·) − F (·)} and

n1/2k

{
Fnk (·) − F (·)} converge to B {F (·)} in distribution. These facts then allow one

to construct both “corrected” and “uncorrected” Kolmogorov–Smirnov SCB for F (·)
based on Fnk (·) with predetermined asymptotic coverage 1 − α:

[
max

(
Fnk (x) − l−1

k L1−α, 0
)
, min

(
Fnk (x) + l−1

k L1−α, 1
)]

, x ∈ R. (7)
[
max

(
Fnk (x) − n−1/2

k L1−α, 0
)
, min

(
Fnk (x) + n−1/2

k L1−α, 1
)]

, x ∈ R. (8)

Theorem 2 shows in addition that D
(
Fnk , F̂k

)
is of order op(l

−1
k ), which leads one

to propose the “corrected” and “uncorrected” smooth SCB for F (·) based on F̂k (·)
with predetermined asymptotic coverage 1 − α:

[
max

(
F̂k(x) − l−1

k L1−α, 0
)
, min

(
F̂k(x) + l−1

k L1−α, 1
)]

, x ∈ R, (9)
[
max

(
F̂k(x) − n−1/2

k L1−α, 0
)
, min

(
F̂k(x) + n−1/2

k L1−α, 1
)]

, x ∈ R. (10)
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Table 2 Coverage frequencies of Model 1: xt − φxt−1 = εt , where εt ∼ N (0, 1) and φ = 0.2; left—

smooth SCB based on KDE F̂k , right—nonsmooth SCB based on ECDF Fnk ; l
−1
k (corrected SCB), n−1/2

k
(uncorrected SCB)

(nk , Nk ) SCB 0.99 0.95 0.90 0.80

(200, 5000) l−1
k 0.994 0.993 0.946 0.939 0.901 0.894 0.817 0.797

n−1/2
k 0.995 0.995 0.952 0.951 0.907 0.906 0.832 0.823

(500, 15,000) l−1
k 0.989 0.989 0.953 0.951 0.897 0.896 0.815 0.810

n−1/2
k 0.991 0.991 0.961 0.959 0.904 0.903 0.827 0.824

(200, 20,000) l−1
k 0.993 0.992 0.956 0.951 0.905 0.901 0.807 0.792

n−1/2
k 0.993 0.992 0.959 0.953 0.910 0.903 0.813 0.797

(500, 20,000) l−1
k 0.992 0.992 0.962 0.963 0.927 0.927 0.839 0.833

n−1/2
k 0.995 0.994 0.967 0.967 0.929 0.929 0.845 0.842

In particular, the smooth SCB of (10) has exactly the same form as the smooth SCB
of Wang et al. (2013).

The paper is organized as follows. Section 2 contains the main theoretical results
on the four SCBs defined in (7), (8), (9) and (10), while Sect. 3 describes the steps to
implement these SCBs. Simulation studies and analysis of the S&P 500 daily returns
are reported in Sects. 4 and 5 with details. Section 6 discusses the contributions of the
proposed SCBs in relation to the existing literature, while all technical proofs are in
the Appendix.

2 Main results

The limiting distribution of stochastic process lk
{
Fnk (·) − FNk (·)} is established

in this section, together with the maximal deviation between Fnk (·) and F̂k (·), and
between FNk (·) and F (·), under rather mild assumptions. These asymptotics lead to
Corollary 1 about the four SCBs in (7), (8), (9) and (10) for F (·), based on Fnk (·)
and F̂k (·).

For any μ ∈ (0, 1] and nonnegative integer ν, denote by C (ν,μ) (R) the space of
functions whose ν-th derivatives satisfy Hölder conditions of order μ

C (ν,μ) (R) =
{

ϕ : R → R

∣∣∣∣∣‖ϕ‖ν,μ = sup
x,y∈R

∣∣ϕ(ν)(x) − ϕ(ν)(y)
∣∣

|x − y|μ < +∞
}
.

For any sequence {yt , t = 0,±1,±2, . . .} of random variables of dimension d > 0,
denote byMb

a the σ -field generated by ya, . . . , yb. The sequence is called α -mixing
if

α(n) := sup
{
|P(A ∩ B) − P(A)P(B)| : A ∈ Mk

1, B ∈ M∞
k+n, k ≥ 1

}
→ 0.
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1022 J. Li et al.

The following general assumptions are needed:

(A1) The sequence {xt , t = 0,±1,±2, . . .} is a stationary and ergodic time series sat-
isfying the α- mixing condition with rate α(n) � n−6−ε .

(A2) There exist an integer ν ≥ 0 and μ ∈ (1/2, 1] such that F ∈ C (ν,μ) (R), and F(x)
is uniformly continuous over x ∈ R.

(A3) limk→∞ min (nk, Nk − nk) = ∞.
(A4) limk→∞ nk/Nk = 0, i.e., limk→∞ fpck = 1.
(A5) The bandwidth h = hnk > 0 and limk→∞ lkh

ν+μ
nk = 0 (i.e., limk→∞ n1/2k hν+μ

nk =
0).

(A6) The kernel K ∈ C (0) (R) and satisfies K (u) = K (−u),∀u ∈ R; K (u) = 0 if
|u| > 1. It is an l-th order kernel for some even integer l > ν +μ, i.e., its moments
μr (K ) = ∫

K (w)wr dw satisfy μ0 (K ) ≡ 1, μl (K ) 
= 0, μr (K ) ≡ 0 for any
integer r , 0 < r < l.

Assumption (A3) implies that nk and Nk −nk both go to infinity as in Rosén (1964),
while Assumptions (A2), (A5) and (A6) are similar to those in Wang et al. (2013).
Assumption (A2) contains uniform continuity of F (·) in addition to F ∈ C (ν,μ) (R).
Assumption (A6) allows the kernel K to have order higher than 2, so ν + μ can be
greater than 2. In contrast, K is restricted to be second order nonnegative kernel in
Wang et al. (2013), thus a probability density, and ν = 0, 1 so ν + μ is always less
than 2. Assumption (A4) gurantees that limk→∞ n−1/2

k /l−1
k = 1 , and the difference

FNk (x) − F(x) is asymptotically N−1/2
k B {F(x)} = op

(
l−1
k

)
.

The following Theorem is an analog to Theorem 14.3 of Billingsley (1999) for the
case of i.i.d. samples:

Theorem 1 Under Assumptions (A1), (A3), there exist versions B∗
k of Brownian bridge

such that as k → ∞, supx∈R
∣∣lk
{
Fnk (x) − FNk (x)

}− B∗
k {F(x)}∣∣ a.s.−→ 0 and conse-

quently lk
{
Fnk (·) − FNk (·)} d→ B {F (·)}.

The next Theorem extends Theorem 2.1 of Wang et al. (2013) to finite population:

Theorem 2 Under Assumptions (A1)–(A6), as k → ∞, the maximal deviation

D
(
Fnk , F̂k

)
defined in (6) satisfies lk D

(
Fnk , F̂k

)
= op (1). Consequently

lk
{
F̂k (·) − FNk (·)

}
d→ B {F (·)} (11)

Moreover, lk D
(
FNk , F

) d→ 0, and n−1/2
k /l−1

k → 1, hence

lk
{
Fnk (·) − F (·)} d→ B {F (·)} , n1/2k

{
Fnk (·) − F (·)} d→ B {F (·)}

lk
{
F̂k (·) − F (·)

}
d→ B {F (·)} , n1/2k

{
F̂k (·) − F (·)

}
d→ B {F (·)} (12)

Theorems 1 and 2 imply the next Corollary, which provides theoretical justifications
for all four asymptotic SCBs of F (·) in (7), (8), (9) and (10). The quantile L1−α of
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Table 3 Coverage frequencies of Model 1: xt − φxt−1 = εt , where εt ∼ N(0, 1) and φ = −0.4; left—

smooth SCB based on KDE F̂k , right—nonsmooth SCB based on ECDF Fnk ; l
−1
k (corrected SCB), n−1/2

k
(uncorrected SCB)

(nk , Nk ) SCB 0.99 0.95 0.90 0.80

(200, 5000) l−1
k 0.984 0.984 0.957 0.951 0.909 0.907 0.827 0.815

n−1/2
k 0.988 0.986 0.963 0.958 0.915 0.910 0.841 0.833

(500, 15,000) l−1
k 0.987 0.987 0.951 0.947 0.900 0.899 0.795 0.790

n−1/2
k 0.989 0.988 0.955 0.954 0.906 0.905 0.814 0.811

(200, 20,000) l−1
k 0.996 0.993 0.957 0.955 0.916 0.911 0.835 0.819

n−1/2
k 0.996 0.995 0.959 0.956 0.918 0.915 0.837 0.826

(500, 20,000) l−1
k 0.990 0.990 0.954 0.952 0.915 0.914 0.832 0.830

n−1/2
k 0.990 0.990 0.960 0.960 0.922 0.920 0.851 0.845

Table 4 Coverage frequencies of Model 2: xt = (
εt + εt−1

)
/2, xt ∼ Cauchy (0, 1); left—smooth SCB

based on KDE F̂k , right—nonsmooth SCB based on ECDF Fnk ; l
−1
k (corrected SCB), n−1/2

k (uncorrected
SCB)

(nk , Nk ) SCB 0.99 0.95 0.90 0.80

(200, 5000) l−1
k 0.987 0.986 0.958 0.953 0.911 0.897 0.800 0.786

n−1/2
k 0.991 0.989 0.964 0.959 0.927 0.912 0.825 0.799

(500, 15,000) l−1
k 0.994 0.991 0.954 0.948 0.900 0.892 0.780 0.767

n−1/2
k 0.995 0.995 0.962 0.957 0.912 0.904 0.799 0.784

(200, 20,000) l−1
k 0.992 0.991 0.953 0.946 0.896 0.884 0.810 0.796

n−1/2
k 0.993 0.991 0.954 0.948 0.900 0.888 0.811 0.802

(500, 20,000) l−1
k 0.987 0.986 0.941 0.936 0.893 0.884 0.789 0.781

n−1/2
k 0.988 0.987 0.943 0.942 0.900 0.894 0.802 0.788

the Kolmogorov distribution is defined in (2) and 1 − α ∈ (0, 1) a predetermined
confidence level.

Corollary 1 Under Assumptions (A1)–(A6), for any α ∈ (0, 1)

lim
k→∞P

[
n1/2k D

(
Fnk , F

) ≤ L1−α

]
= 1 − α , lim

k→∞P
[
lk D

(
Fnk , F

) ≤ L1−α

] = 1 − α, ,

lim
k→∞P

[
n1/2k D

(
F̂k , F

)
≤ L1−α

]
= 1 − α , lim

k→∞P

[
lk D

(
F̂k , F

)
≤ L1−α

]
= 1 − α, .

Consequently, the SCBs in (7), (8), (9) and (10) are all asymptotically 100(1 − α)%
correct for F (·).
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1024 J. Li et al.

Table 5 Coverage frequencies of Model 3: xt = εt + θεt−1, εt ∼ E (0, 1) , θ = 2; left—smooth SCB

based on KDE F̂k , right—nonsmooth SCB based on ECDF Fnk ; l
−1
k (corrected SCB), n−1/2

k (uncorrected
SCB)

(nk , Nk ) SCB 0.99 0.95 0.90 0.80

(200, 5000) l−1
k 0.986 0.982 0.941 0.936 0.898 0.881 0.805 0.784

n−1/2
k 0.991 0.986 0.951 0.943 0.908 0.898 0.816 0.799

(500, 15,000) l−1
k 0.990 0.987 0.939 0.937 0.899 0.889 0.814 0.805

n−1/2
k 0.994 0.993 0.963 0.960 0.918 0.910 0.835 0.827

(200, 20,000) l−1
k 0.990 0.988 0.957 0.951 0.904 0.893 0.810 0.784

n−1/2
k 0.990 0.988 0.961 0.951 0.907 0.895 0.816 0.788

(500, 20,000) l−1
k 0.988 0.988 0.956 0.953 0.917 0.908 0.824 0.809

n−1/2
k 0.988 0.988 0.960 0.957 0.922 0.916 0.835 0.825

3 Implementation

This section describes how SCBs are constructed based on estimators Fnk (·) and
F̂k (·) defined in (4) and (5), respectively. According to Corollary 1, for sample size
nk > 50, the corrected and uncorrected nonsmooth and smooth SCBs for the true cdf
are computed and named as follows:

SCB in (7), “corrected, nonsmooth”,

SCB in (9), “corrected, smooth”,

SCB in (8), “uncorrected, nonsmooth”,

SCB in (10), “uncorrected, smooth”.

By using the quartic kernel K (u) = 15
(
1 − u2

)2
I {|u| ≤ 1} /16, the proposed

function F̂k (x) is computed as

F̂k (x) = n−1
k

nk∑

i=1

∫ x

−∞
h−1K

(
u − Xi

h

)
du

in which h = IQR × l−2
k , where IQR stands for the Inter-Quartile Range of{

X1, . . . , Xnk

}
. The bandwidth h automatically satisfies Assumption (A5) and is sim-

ilar to that used in Wang et al. (2013).
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4 Simulation

4.1 General simulation studies

In this section, we display the performance of the various SCBs on estimators Fnk (·)
and F̂k (·). Time series data {xt }Nt=1 is generated from three different models. The
first one is causal Gaussian AR(1), the other two are 2-dependent, hence all three are
geometrically ergodic and α -mixing.

Model 1. The data {xt }Nt=1 is a segment of {xt }∞t=−∞ with

xt − φxt−1 = εt , xt =
∞∑

j=0

φ jεt− j ∼ N

(
0,
(
1 − φ2

)−1
)

where i.i.d. εt ∼ N (0, 1) , t = 0,±1,±2, . . . , |φ| < 1 and the infinite series con-
verges almost surely. The above entails that the stationary distribution function of xt
is

F(x) = �

{(
1 − φ2

)1/2
x

}
,

in which �(·) is the standard normal distribution function. In our experiments, the
parameter φ is taken to be 0.2,−0.4.

Model 2. The data {xt }Nt=1 is a segment of {xt }∞t=−∞ with

xt = (εt + εt−1) /2, xt ∼ Cauchy (0, 1)

where i.i.d. εt ∼ Cauchy (0, 1) , t = 0,±1,±2, . . . The above entails that the station-
ary distribution function of xt is

F(x) = π−1 arctan x + 1/2.

Model 3. The data {xt }Nt=1 is a segment of {xt }∞t=−∞ with

xt = εt + θεt−1,

where i.i.d. εt ∼ E (0, 1) , t = 0,±1,±2, . . . , θ ∈ (0,∞). The above entails that the
stationary distribution function of xt is

F(x) =
{
1 + (e−x − θe−x/θ ) (θ − 1)−1

}
I (x > 0) .

In our experiments, the parameter θ is taken to be 2.
A realization πk of size Nk is first generated from each of the above model, SRS{

Xn1 , . . . , Xnk

}
of size nk are then drawn without replacement from πk . The sample

sizes and time series lengths are selected as (nk, Nk) = (200, 5000), (500, 15,000),
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(a) (b)

(c) (d)

Fig. 4 The true cdf (thick line), smooth KDE and its accompanying corrected 95% SCBs (solid), empirical
cdf and its accompanying corrected 95% SCBs (dashed) with (nk , Nk ) = (200, 5000) for different models:
(a, b)Model 1 with φ = 0.2,−0.4 respectively; (c)Model 2; (d)Model 3 with θ = 2. It shows negligible
difference between KDE and empirical cdf estimator

(200, 20,000), (500, 20,000), with confidence levels 1−α = 0.99, 0.95, 0.90, 0.80 for
constructing SCBs. Tables 2, 3, 4 and 5 display the frequencies out of 1000 replications
of the true function F (·) being contained at all data points {x1, x2, . . . , xNk

}
by various

SCBs. Main findings are summarized as follows:

1. In general, coverage frequencies of uncorrected SCBs are always slightly higher
than the corrected ones. Smooth and nonsmooth SCBs have nearly the same cover-
age frequencies. Corrected SCBs have coverage frequencies closer to the nominal
levels than uncorrected ones.

2. The performance of SCBs for all cdf F (·) of differentmodels, with different sample
sizes and confidence levels is satisfactory across the board (the coverage frequency
is close to the predetermined nominal confidence level), which implies that the
method is robust and widely applicable.

3. Since both nk and Nk are quite large in the simulation, the ratio nk/Nk makes little
difference in the performance of the estimation and SCB coverage frequencies.
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To visualize the SCBs, Fig. 4 depicts the true cdf F (·) (thick) in different models,
the smooth KDE F̂k (·) together with its 95% SCB (solid), the empirical cdf Fnk (·)
together with its 95% SCB (dashed), for one specifically simulated time series and
one sample in each simulation setting. In all plots we use the sample with the median
confidence band width in the 1000 runs. To save space, only the combination of
(nk, Nk) = (200, 5000) is shown. The figures for other combinations are similar. One
clearly sees that the SCBs constructed based on Fnk (·) and F̂k (·), and the estimators
themselves are nearly indistinguishable from each other. For the same population
size of 5000, the SCBs tend to be narrower as the sample size nk increases and l−1

k
decreases.

4.2 Comparison with parametric SCB

In this subsection, simulations are conducted to compare the proposed Kolmogorov–
Smirnov type SCBs with parametric ones. To the best of our knowledge, there are no
other nonparametric SCBs for time series distribution function to make a comparison
with ours.

Given a time series {xt }Nt=1, if one naively assumes that the data is generated from
a causal Gaussian AR(1) model:

(xt − μ) − φ (xt−1 − μ) = εt , εt ∼ IID N (0, σ 2).

According to Lemma 1, a 100(1 − α)% confidence interval for μ is

[
xN − N−1/2(1 − φ)−1σ z1−α/2, xN − N−1/2(1 − φ)−1σ zα/2

]
,

where xN = N−1∑N
t=1 xt . Lemma 2 provides consistent estimators for the unknown

φ and σ 2 as φ̂ = γ̂ (1)/γ̂ (0) and σ̂ 2 = (γ̂ 2(0) − γ̂ 2(1)
)
/γ̂ (0) with

γ̂ (l) = N−1
n−l∑

t=1

(xt − xN ) (xt+l − xN ) , l = 0, 1.

For notation simplicity, denote μ = xN − N−1/2(1 − φ̂)−1σ̂ z1−α/2 and μ = xN −
N−1/2(1 − φ̂)−1σ̂ zα/2. Since �(x − μ) has monotonicity in x and linearity in μ, a
100(1 − α)% parametric confidence band for F (x) is constructed as

[
�

{(
1 − φ̂2

)1/2
(x − μ)

}
,�

{(
1 − φ̂2

)1/2
(x − μ)

}]
, x ∈ R. (13)

Time series data {xt }Nt=1 are generated by two different models. The first one is
Model 2, the second one the following:
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Table 6 Coverage frequencies of Model 2: xt = (
εt + εt−1

)
/2, xt ∼ Cauchy (0, 1); left—smooth SCB

based on KDE F̂k , right—nonsmooth SCB based on ECDF Fnk ; l
−1
k (corrected SCB), n−1/2

k (uncorrected
SCB), parametric (parametric SCB)

(nk , Nk ) SCB 0.99 0.95 0.90 0.80

(200, 5000) l−1
k 0.987 0.986 0.958 0.953 0.911 0.897 0.800 0.786

n−1/2
k 0.991 0.989 0.964 0.959 0.927 0.912 0.825 0.799

Parametric 0 0 0 0

(500, 15,000) l−1
k 0.994 0.991 0.954 0.948 0.900 0.892 0.780 0.767

n−1/2
k 0.995 0.995 0.962 0.957 0.912 0.904 0.799 0.784

Parametric 0 0 0 0

(200, 20,000) l−1
k 0.992 0.991 0.953 0.946 0.896 0.884 0.810 0.796

n−1/2
k 0.993 0.991 0.954 0.948 0.900 0.888 0.811 0.802

Parametric 0 0 0 0

(500, 20,000) l−1
k 0.987 0.986 0.941 0.936 0.893 0.884 0.789 0.781

n−1/2
k 0.988 0.987 0.943 0.942 0.900 0.894 0.802 0.788

Parametric 0 0 0 0

Model 4. The data {xt }Nt=1 is a segment of {xt }∞t=−∞ with

(xt − μ) − φ (xt−1 − μ) = εt , xt = μ +
∞∑

j=0

φ jεt− j ∼ N

(
μ,
(
1 − φ2

)−1
)

where i.i.d. εt ∼ N (0, 1) , t = 0,±1,±2, . . . , |φ| < 1 and the infinite series con-
verges almost surely. The above entails that the stationary distribution function of xt
is

F(x) = �

{(
1 − φ2

)1/2
(x − μ)

}
,

in which �(·) is the standard normal distribution function. In our experiments, the
parameter φ is taken to be 0.2 and μ is 2.

Again, SRS
{
Xn1 , . . . , Xnk

}
of size nk are drawn without replacement after a real-

ization πk of size Nk is generated from the above two models. The combinations
of (nk, Nk) are the same as in the previous subsection. Four Kolmogorov–Smirnov
type SCBs are constructed along with the parametric SCB with confidence levels
1 − α = 0.99, 0.95, 0.90, 0.80 for comparing performance.

Tables 6 and 7 display the coverage frequencies over 1000 replications of the various
SCBs. It is clear that the parametric SCB severely suffers from the problem of model
misspecification, leading to poor coverage frequency in Model 2, see Table 6. The KS
type SCBs, on the other hand, always have coverage frequencies closer to the nominal
level than the parametric SCB, even when the model is correctly specified as Model
4, see Table 7.
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Table 7 Coverage frequencies of Model 4: (xt − μ) − φ
(
xt−1 − μ

) = εt , where εt ∼ N (0, 1), μ = 2

and φ = 0.2; left—smooth SCB based on KDE F̂k , right—nonsmooth SCB based on ECDF Fnk ; l
−1
k

(corrected SCB), n−1/2
k (uncorrected SCB), parametric (parametric SCB)

(nk , Nk ) SCB 0.99 0.95 0.90 0.80

(200, 5000) l−1
k 0.987 0.987 0.951 0.946 0.900 0.897 0.811 0.802

n−1/2
k 0.989 0.987 0.959 0.952 0.912 0.907 0.829 0.819

Parametric 0.972 0.920 0.885 0.776

(500, 15,000) l−1
k 0.992 0.992 0.957 0.957 0.907 0.904 0.828 0.822

n−1/2
k 0.992 0.992 0.959 0.959 0.921 0.916 0.842 0.839

Parametric 0.970 0.931 0.878 0.763

(200, 20,000) l−1
k 0.995 0.994 0.961 0.957 0.911 0.902 0.828 0.818

n−1/2
k 0.995 0.995 0.961 0.958 0.911 0.906 0.834 0.825

Parametric 0.979 0.932 0.880 0.784

(500, 20,000) l−1
k 0.989 0.989 0.949 0.949 0.905 0.904 0.818 0.813

n−1/2
k 0.991 0.991 0.953 0.950 0.909 0.910 0.830 0.825

Parametric 0.976 0.935 0.877 0.788

Fig. 5 Corrected smooth, corrected nonsmooth and parametric 95% SCBs with (nk , Nk ) = (200, 5000)
for Model 2

To visualize the SCBs, Figs. 5 and 6 show the true cdf F (·) (thick), the corrected
smooth 95% SCB (solid), the corrected nonsmooth 95% SCB (dotted), the parametric
95% SCB (dashed) based on the combination of (nk, Nk) = (200, 5000). One clearly
sees that the parametric SCB performs well in Fig. 6 but extremely poorly in Fig. 5,
most likely due to the use of incorrect parametric form for the distribution function in
Model 2. Our methods enjoy the advantage of stability and computational ease, thus
reliable and efficient for practical applications.
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Fig. 6 Corrected smooth, corrected nonsmooth and parametric 95% SCBs with (nk , Nk ) = (200, 5000)
for Model 4 with φ = 0.2 and μ = 2

5 Application

In this section, the proposed method is applied to the S&P 500 daily returns data,
already discussed in the introduction. This data set includes observations from January
3, 1950 to August 28, 2018, a total of 17,277 closing prices SPIt , t = 0, . . . , 17,276,
which were downloaded from https://finance.yahoo.com. The daily returns are cal-
culated by yt = log (SPIt/SPIt−1) , t = 1, . . . , 17,276. The plot of {yt }17,276t=1 is in
Fig. 1a, which, as mentioned in the introduction, exhibits rather pronounced nonsta-
tionarity over the entire 68 years. It is thus meaningless to draw any conclusions on the
distribution of this raw return series {yt }17,276t=1 . Instead, a cubic spline curve {gt }17,276t=1

is fitted to the slowly varying trend of {y2t }17,276t=1 , as in Shao and Yang (2017) and

Zhang et al. (2020). Then the standardized returns xt = yt g
−1/2
t , 1 ≤ t ≤ 17,276 are

obtained as a stationary time series. The time plot of {xt }17,276t=1 is in Fig. 1b, whose
distributional properties are studied.

An ad hoc initial analysis is done by constructing an 99% Kolmogorov–Smirnov
SCB based on {xt }17,276t=1 , namely

[
max

(
FN (x) − 1.63N−1/2, 0

)
, min

(
FN (x) + 1.63N−1/2, 1

)]
, x ∈ R,

where FN (x) = N−1∑N
t=1 I (xt ≤ x) with N = 17,276. The 99% Kolmogorov–

Smirnov SCB is shown in Fig. 2 as the solid lines, with the empirical cumulative
distribution function FN the dotted line in the middle. The closest normal approx-
imation to FN is shown in Fig. 2 as the thick line with the distribution function
�
{
(x − x̄N ) /ŝN

}
, where x̄N and ŝ2N are sample mean and sample variance of

{xt }17,276t=1 respectively. A naive statistician could conclude that at significance level
0.01, normality is rejected for FN because the normal distribution function falls outside
the 99% SCB.
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The above analysis is incorrect because theKolmogorov–SmirnovSCB is computed
without regard to the dependence in {xt }17,276t=1 . Instead, one can draw a SRS from

{xt }17,276t=1 and compute corrected SCBs from (7) and (9), shown in Fig. 3. Clearly,
all SCBs contain properly rescaled t-distribution functions with degrees of freedom
3, 4, 200 and normal distribution in entirety. Notice that all SCBs are reliable as the
combination nk = 200, Nk = 17,276 is in the range of sample sizes in simulation
examples from previous section with satisfactory results. This well-founded analysis
leads to the somewhat surprising conclusion that the distribution of {xt }17,276t=1 could be
either fat-tailed such as rescaled t-distribution with degree of freedom 3, 4, or, normal
distribution.

6 Conclusions

In this work, Kolmogorov–Smirnov type SCBs are constructed by using SRS drawn
from time series realization, and shown both theoretically and numerically to perform
well despite dependence in the sample and in the time series. These SCBs are useful
for testing against any hypothesis on the stationary distribution function of time series
such as normality, fat-tailedness, etc., and are theoretically reliable, easy to implement
alternatives to existing ad hoc approaches. Further research may yield multivariate
and/or conditional extensions, and versions for other dependent data such as spatial-
temporal data, functional data, etc. In addition, constructing prediction intervals for
future observations of time series is a potentially interesting direction to pursue with
the aid of KDE.

Appendix

Throughout this section, c denotes any positive constant andOp (or op) a sequence of
random variables of certain order in probability. In addition, u p denotes a sequence of
random functions which are op uniformly defined in the domain. For any continuous
function φ defined on an interval I, the modulus of continuity is defined asω (φ,Δ) =
supx,x ′∈I,|x−x ′|≤Δ

∣∣φ
(
x ′)− φ (x)

∣∣

Lemma 1 (Theorem 7.1,2, Brockwell and Davis (1991)) If {Xt }nt=1 is the stationary
process,

Xt = μ +
∞∑

j=−∞
ψ jεt− j , εt ∼ IID(0, σ 2)

with
∑∞

j=−∞
∣∣ψ j
∣∣ < ∞ and

∑∞
j=−∞

∣∣ψ j
∣∣ 
= 0, then Xn is AN

(
μ, n−1v

)
, where

Xn = n−1∑n
t=1 Xt , v = ∑∞

h=−∞ γ (h) = σ 2
(∑∞

j=−∞ ψ j

)2
, and γ (·) is the auto-

covariance function of {Xt }nt=1.
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Lemma 2 (Theorem 8.1, Brockwell and Davis (1991)) If {Xt }nt=1 is the zero-mean
causal AR(p) process,

Xt − φ1Xt−1 − · · · − φp Xt−p = Zt , Zt ∼ IID(0, σ 2)

and φ̂ is the Yule-Walker estimator of φ, that is φ̂ = Γ −1
p γ̂ p with Γ̂ p =

{
γ̂ (i − j)

}p
i, j=1 and γ̂ p = (γ̂ (1), . . . , γ̂ (p)

)�
, then

√
n
(
φ̂ − φ

)
d→ N

(
0, σ 2Γ −1

p

)

where Γ p is the covariance matrix with Γ p = {γ (i − j)}pi, j=1. Moreover,

σ̂ 2 p→ σ 2,

where σ̂ 2 = γ̂0 − φ̂
�
γ̂ p.

A.1 Preliminary results on weak convergence

The next weak convergence result extends (1) of the Donsker’s Theorem to strongly
mixing time series.

Lemma 3 (Deo 1973) Let {ξn : −∞ < n < ∞} be a strictly stationary sequence of
random variables, {Fn (t) : 0 ≤ t ≤ 1} be the empirical process for ξ1, ξ2, . . . , ξn, i.e.,
Fn(t) = n−1∑n

i=1 I[0,t] (ξi ) where I[0,t] (·) is the indicator function of the interval
[0, t]. Suppose that 0 ≤ ξ0 ≤ 1 and ξ0 have continuous distribution function F with
F(0) = 0 and F(1) = 1. Normalize Fn(t) as

Yn(t) = n1/2 (Fn (t) − F (t)) , 0 ≤ t ≤ 1.

For 0 ≤ t ≤ 1, define the function gt by

gt (x) = I[0,t] (x) − F(t),

and suppose further that {ξn} satisfies the mixing condition

∞∑

n=1

n2α(n)1/2−τ < ∞ f or some τ ∈ (0, 1/2) .

Then the sequence {Yn(t) : 0 ≤ t ≤ 1} of normalized empirical processes converges
weakly in D[0, 1] to a Gaussian random function {Y (t) : 0 ≤ t ≤ 1} specified by
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E (Y (t)) = 0 and

E{Y (s)Y (t)} = E{gs (ξ0) gt (ξ0)} +
∞∑

k=1

E{gs (ξ0) gt (ξk)}

+
∞∑

k=1

E{gs (ξk) gt (ξ0)}
(14)

Furthermore, the series in (14) converges absolutely and the sample paths of Y are
continuous with probability one.

The following lemma yields a uniformly continuous Gaussian limiting process ζ (·)
on R for the empirical process N 1/2

k

{
FNk (·) − F (·)}, which is used in the proof of

Theorem 2.

Lemma 4 Under Assumptions (A1) and (A2), there exists a mean-zero Gaussian
process Y (·) whose sample path is continuous on [0, 1] with probability one such

that as k → ∞, N 1/2
k

{
FNk (·) − F (·)} d→ ζ (·) = Y (F (·)). Furthermore, the

process ζ (·) is uniformly continuous on R with modulus of continuity ω (ζ,Δ) ≤
ω (Y , ω (F,Δ)) → 0 a.s. as Δ → 0.

Proof. Define a transformed time series ui = F (xt ), i = 0,±1,±2, . . .. For any
x ∈ R, let t = F(x) ∈ [0, 1], then FNk (x) = FU ,Nk (t), in which

FU ,Nk (t) = N−1
k

Nk∑

i=1

I {ui ≤ t} .

The α-mixing coefficients for {ui }∞i=−∞ is the same as those for {xi }∞i=−∞, which
satisfy Assumption (A1) that α(n) � n−6−ε , hence there exists τ ∈ (0, 1/2) such
that α(n)1/2−τ � n−3, and thus

∑∞
n=1 n

2α(n)1/2−τ < ∞. Then applying Lemma 3

with ξi replaced by ui , one has N
1/2
k {FU ,Nk (t) − t} → Y (t).

Define ζ(x) = Y (F (x)), then N 1/2
k

{
FNk (·) − F (·)} d→ ζ (·) as k → ∞ and

sup
x,x ′∈R,|x−x ′|≤Δ

∣∣∣ζ (x) − ζ
(
x ′)
∣∣∣ = sup

x,x ′∈R,|x−x ′|≤Δ

∣∣∣Y (F (x)) − Y
(
F
(
x ′))

∣∣∣

≤ sup
t,t ′∈[0,1],|t−t ′|≤ω(F,Δ)

∣∣∣Y (t) − Y
(
t ′
) ∣∣∣ ≤ ω (Y , ω (F,Δ))

The uniform continuity of F(·) is guaranteed by Assumption (A2), and almost sure
uniform continuity of Y (·) by the fact that sample paths of Y (·) are almost surely con-
tinuous over the compact interval [0, 1]. These facts imply that ω (Y , ω (F,Δ)) →
0 a.s. as Δ → 0, thus ζ is continuous with probability one and ω (ζ,Δ) ≤
ω (Y , ω (F,Δ)).
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A.2 Proof of Theorem 1

Define a transformed time series ui = F (xi ), i = 0,±1,±2, . . . and for any k =
1, 2, . . ., a finite population πk,U = {u1, u2, . . . , uNk } together with a simple random
sample Ui = F (Xi ), 1 ≤ i ≤ nk from population πk,U . For any x ∈ R, let t =
F(x) ∈ [0, 1], then

FNk (x) = FU ,Nk (t), Fnk (x) = FU ,nk (t), (15)

in which

FU ,Nk (t) = N−1
k

Nk∑

i=1

I {ui ≤ t} , (16)

FU ,nk (t) = n−1
k

nk∑

i=1

I {Ui ≤ t} . (17)

By Assumption (A1), the time series {ut , t = 0,±1,±2, . . .} is ergodic and has sta-
tionary distributionU (0, 1), hence almost surely limk→∞ FU ,Nk (t) = t for 0 ≤ t ≤ 1.
As limk→∞ min (nk, Nk − nk) = ∞ is contained in Assumption (A3), applying The-
orem 14.1 of Rosén (1964), one obtains that as random elements taking values in the
space D [0, 1] of cadlag functions:

λk
{
FU ,nk (t) − FU ,Nk (t)

} d→ B(t)

almost surely. Lastly, Skorohod’s Representation Theorem (Theorem 6.7, Billingsley
1999) provides versions B∗

k of Brownian bridge such that

sup
t∈[0,1]

∣∣λk
{
FU ,nk (t) − FU ,Nk (t)

}− B∗
k (t)

∣∣→ 0, a.s.

which implies that

sup
x∈R

∣∣lk
{
Fnk (x) − FNk (x)

}− B∗
k (F (x))

∣∣→ 0, a.s.

The Theorem 1 is proved.

A.3 Proof of Theorem 2

Lemma 5 Under Assumptions (A1) to (A3), (A5), as k → ∞,

sup
w∈[−1,1],x∈R

∣∣∣
{
Fnk (x − hw) − Fnk (x)

}− {FNk (x − hw) − FNk (x)
} ∣∣∣ = op

(
l−1
k

)
.
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Proof For the Brownian bridges B∗
k {·} in Theorem 1,

sup
w∈[−1,1],x∈R

∣∣lk
{
Fnk (x − hw) − FNk (x − hw)

}− lk
{
Fnk (x) − FNk (x)

}∣∣

≤ sup
x,x ′∈R,|x−x ′|≤h

∣∣lk
{
Fnk
(
x ′)− FNk

(
x ′)}− lk

{
Fnk (x) − FNk (x)

}∣∣

≤ 2 sup
x

∣∣lk
{
Fnk (x) − FNk (x)

}− B∗
k {F(x)}∣∣

+ sup
x,x ′∈R,|x−x ′|≤h

∣∣B∗
k

{
F
(
x ′)}− B∗

k {F(x)}∣∣ . (18)

Since F (·) is uniformly continuous by Assumption (A2), and Assumption (A5)
implies that h → 0 as k → ∞, so ω (F, h) → 0 as k → ∞. Assumptions (A1), (A3)
ensure Theorem 1, so lk

{
Fnk (·) − FNk (·)}− B∗

k {F (·)} → 0 a.s. as k → ∞. Thus,
the expression in (6) is bounded by

2 sup
x∈R

∣∣lk
{
Fnk (x) − FNk (x)

}− B∗
k {F(x)}∣∣+ sup

t,t ′∈[0,1],|t−t ′|≤ω(F,h)

∣∣B∗
k

(
t ′
)− B∗

k (t)
∣∣

= oa.s. (1) + op (1) = op (1) .

In other words,

sup
w∈[−1,1],x∈R

∣∣∣
{
Fnk (x − hw) − Fnk (x)

}− {FNk (x − hw) − FNk (x)
} ∣∣∣ = op

(
l−1
k

)
. (19)

��
Lemma 6 Under Assumptions (A1), (A2), (A5), as k → ∞,

sup
w∈[−1,1],x∈R

∣∣∣
{
FNk (x − hw) − FNk (x)

}− {F (x − hw) − F(x)}
∣∣∣ = op

(
N−1/2
k

)
.

Proof Next, since Lemma 4 implies that N 1/2
k

{
FNk (·) − F (·)} d→ ζ (·), Skorohod’s

Representation Theorem (Theorem 6.7, Billingsley 1999) provides versions ζk (·) of
ζ (·) such that

sup
x∈R

∣∣∣N 1/2
k

{
FNk (x) − F (x)

}− ζk (x)
∣∣∣→ 0, a.s.

Consequently

sup
w∈[−1,1],x∈R

∣∣∣N 1/2
k

{
FNk (x − hw) − F (x − hw)

}− N 1/2
k

{
FNk (x) − F (x)

}∣∣∣

≤ sup
x,x ′∈R,|x−x ′|≤h

∣∣∣N 1/2
k

{
FNk

(
x ′)− F

(
x ′)}− N 1/2

k

{
FNk (x) − F (x)

}∣∣∣

≤ 2 sup
x∈R

∣∣∣N 1/2
k

{
FNk (x) − F (x)

}− ζk (x)
∣∣∣+ ω (ζk, h) = op (1) .
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Hence the following holds

sup
w∈[−1,1],x∈R

∣∣∣
{
FNk (x − hw) − FNk (x)

}− {F (x − hw) − F(x)}
∣∣∣ = op

(
N−1/2
k

)
. (20)

Lemma 7 Under the Assumptions (A2), (A5) and (A6), as k → ∞,

sup
x∈R

∣∣∣∣
∫ 1

−1
{F (x − hw) − F (x)}K (w) dw

∣∣∣∣ = o
(
l−1
k

)
.

Proof According to the assumptions of the cumulative distribution function, we dis-
cuss the problem in two cases.
Case 1: ν ≥ 1. Note that byAssumption (A6)

∫ 1
−1 K (w)wr dw ≡ 0, r = 1, . . . , l−1,

and by Assumption (A2) F(·) ∈ C (ν,μ) (R). Hence

∫ 1

−1
{F (x − hw) − F(x)} K (w) dw

=
∫ 1

−1

⎧
⎨

⎩F (x − hw) −
ν−1∑

r=0

F(r)(x)

r ! (−hw)r

⎫
⎬

⎭ K (w) dw

=
∫ 1

−1

{∫ x−hw

x

F(ν)(t)

(ν − 1)! (x − hw − t)ν−1 dt

}
K (w) dw

=
∫ 1

−1

{
F(ν)(x)

(ν − 1)! (−hw)ν +
∫ x−hw

x

F(ν)(t) − F(ν)(x)

(ν − 1)! (x − hw − t)ν−1 dt

}
K (w) dw

=
∫ 1

−1

{∫ x−hw

x

F(ν)(t) − F(ν)(x)

(ν − 1)! (x − hw − t)ν−1 dt

}
K (w) dw

Furthermore, by Assumption (A2) F (ν)(·) ∈ C (0,μ) (R) and

sup
x∈R

∣∣∣∣
∫ 1

−1
{F (x − hw) − F (x)} K (w) dw

∣∣∣∣

≤ sup
x∈R

∫ 1

−1

∣∣∣∣
∫ x−hw

x

F (ν)(t) − F (ν)(x)

(ν − 1)! (x − hw − t)ν−1 dt

∣∣∣∣ K (w) dw

≤ sup
x∈R

∫ 1

−1

∣∣∣∣∣(hw)ν sup
x≤t≤x−hw

∣∣F (ν)(t) − F (ν)(x)
∣∣

(ν − 1)!

∣∣∣∣∣ K (w) dw

≤ sup
x∈R

∫ 1

−1

∣∣∣∣∣(hw)ν sup
x≤t≤x−hw

C |t − x |μ
(ν − 1)!

∣∣∣∣∣ K (w) dw

≤ sup
x∈R

∫ 1

−1

∣∣∣∣(hw)ν
C(hw)μ

(ν − 1)!
∣∣∣∣ K (w) dw

≤ sup
x∈R

∫ 1

−1
chν+μ |w|ν+μ K (w) dw = O (hν+μ

) = o
(
l−1
k

)
, (21)
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which follows from Assumption (A5) that limk→∞ lkh
ν+μ
nk = 0.

Case 2: ν = 0. By Assumption (A2) F(x) ∈ C (0,μ) (R). Hence

sup
x∈R

∣∣∣∣
∫ 1

−1
{F (x − hw) − F (x)}K (w) dw

∣∣∣∣

≤ sup
x∈R

∫ 1

−1
C (hw)μ K (w) dw

= O (hν+μ
) = o

(
l−1
k

)
, (22)

which follows from Assumption (A5) that limk→∞ lkh
ν+μ
nk = 0. ��

Proof of Theorem 2 Define G(x) = ∫ x
−∞ K (u) du. By the definition of F̂k(x), one

obtains

F̂k(x) = n−1
nk∑

i=1

∫ x

−∞
Kh (u − Xi ) du = n−1

k

nk∑

i=1

G

(
x − Xi

h

)
.

Therefore, by the definition of Fnk (x) = n−1
k

∑nk
i=1 I (Xi ≤ x) in (4)

F̂k(x) =
∫ +∞

−∞
G

(
x − u

h

)
dFnk (u) =

∫ +∞

−∞
h−1K

(
x − u

h

)
Fnk (u) du

=
∫ 1

−1
K (w) Fnk (x − hw) dw

using integration by parts and a change of variable w = (x − u) /h . The following
decomposition plays an important role:

F̂k(x) − Fnk (x) =
∫ 1

−1

{
Fnk (x − hw) − Fnk (x)

}
K (w) dw. (23)

Since Assumption (A4) requires that nk/Nk = o (1) and consequently N−1/2
k =

o
(
l−1
k

)
, using Lemma 5 and Lemma 6 together with the triangle inequality imply that

as k → ∞
∣∣{Fnk (x − hw) − Fnk (x)

}− {F (x − hw) − F(x)}∣∣ = u p

(
l−1
k

)
. (24)

By Lemma 7 and applying (23), (24), (21) and (22), the following holds

sup
x∈R

∣∣∣F̂k(x) − Fnk (x)
∣∣∣ = sup

x∈R

∣∣∣∣
∫ 1

−1

{
Fnk (x − hw) − Fnk (x)

}
K (w) dw

∣∣∣∣ = op
(
l−1
k

)
.

Applying Theorem 1, one has lk
{
F̂k(x) − FNk (x)

}
d→ B {F(x)} , proving (11).
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Notice that under Assumption (A4), n−1/2
k /l−1

k → 1, N−1/2
k = o

(
l−1
k

)
, N−1/2

k =
o
(
n−1/2
k

)
as k → ∞, and that N 1/2

k

{
FNk (·) − F (·)} d→ ζ (·) by Lemma 4. Hence,

as k → ∞

n1/2k D
(
FNk , F

) = n1/2k Op

(
N−1/2
k

)
= Op

(
n1/2k N−1/2

k

)
= op (1) .

Likewise, lk D
(
FNk , F

) = op (1). These, together with (11) establish (12). The proof
of Theorem 2 is complete by applying Slutsky’s Theorem.
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