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ABSTRACT
We study herein an autoregressive model with spatially correlated error terms and missing data. A logistic
regression model with completely observed covariates is used to model the missingness mechanism. An
autoregressive model is used to accommodate time series dependence, and a spatial error model is used
to capture spatial dependence. To estimate the model, a weighted least squares estimator is developed
for the temporal component, and a weighted maximum likelihood estimator is developed for the spatial
component. The asymptotic properties for both estimators are investigated. The finite sample performance
is assessed through extensive simulation studies. A real data example about Beijing’s PM2.5 level data is
illustrated.
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1. Introduction

Time series data with spatial dependence are common in prac-
tice. Consider, for example, the PM2.5 air quality data released by
the Beijing Municipal Environmental Monitoring Center. The
PM2.5 readings are collected at different monitoring sites and
different time points in Beijing. This is a dataset of profound
importance for public health. Statistical modeling in this regard
is challenging because two types of dependencies are involved,
namely, time series dependence and spatial dependence. In
addition, due to some practical reasons, a significant portion of
the data could be missing, which makes the situation even more
complicated.

It is noteworthy that even with complete data, determining
how to statistically model data with both time series and spa-
tial dependencies can be difficult. To accommodate time series
dependence, various time series models have been developed,
including autoregressive (AR) models, moving average models
(Brockwell and Davis 1991; Hamilton 1994; Fuller 1996), and
others. To accommodate spatial dependence, various spatial
models have been developed, including spatial autoregressive
models (Ord 1975; Anselin 1980; Lee, Liu, and Lin 2010), spatial
error models (SEMs, LeSage and Pace 2009), and others. How-
ever, to simultaneously consider both types of dependencies
remains a challenging problem. In this regard, various dynamic
panel data models have been proposed. For example, a spatial
dynamic panel data (SDPD) model with fixed individual effects
was proposed by Yu, de Jong, and Lee (2008). Lee and Yu
(2014) extended that model and proposed a SDPD model with
both individual and time effects. Lee and Yu (2010) developed
spatial autoregressive panel data models with fixed individual
effects and spatial autoregressive disturbances. Su and Yang
(2015) proposed dynamic panel data models with spatial errors.
Recently, Yang (2018) developed SDPD models with spatial
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errors for short panels. More discussions can be found in the
above studies and references therein. In addition, Dou, Parrella,
and Yao (2016) and Gao et al. (2019) developed spatiotemporal
models with unknown coefficients as well as diagonal or banded
matrices. It is noteworthy that all of the above models were
developed for complete data.

In this work, we propose a novel autoregressive model but
with spatially correlated errors. Specifically, a standard autore-
gressive model is used to model the temporal effect. By doing
so, each time series can be fitted separately in a parallel manner.
The competitive advantage could be significant if the number
of time series is large. To capture spatial dependence, the time
series errors from different locations are allowed to be spatially
dependent. The dependency is modeled by the widely used
spatial autoregressive model. In the case of complete data, the
model can be fitted by a quasi-maximum likelihood method (Yu,
de Jong, and Lee 2008). However, establishing an approach to
conduct parameter estimation in the presence of missing data is
challenging. To fill this theoretical gap, a new method needs to
be developed.

To solve this problem, we first need a probabilistic model
to reflect the missingness mechanism. To this end, a standard
logistic regression model is used. In theory, this model can be
replaced by any parametric regression model with a binary
response. The covariate used in the logistic regression is
assumed to be completely observed. By doing so, we implicitly
adopt the missing at random (MAR) assumption. In addition,
two other popularly used assumptions are missing completely at
random (MCAR) and nonignorable missing (NM). See Rubin
(1976) for a more detailed discussion. In our case, the MAR
assumption implies that conditional on the observed covariates,
whether the response is missing or not is independent of
the response itself. Under the MAR assumption, a weighted
least squares estimator (WLSE) is proposed to estimate the
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autoregressive dependence. In addition, a weighted maximum
likelihood estimator (WMLE) is developed to estimate the
spatial dependence. Both estimators are shown to be consistent
and asymptotically normal. Extensive simulation studies are
presented to demonstrate their finite sample performance.
Last, a real data example based on Beijing’s PM2.5 level data
is demonstrated.

The rest of the article is organized as follows. Section 2
introduces the model and methodology. The WLSE and WMLE
are developed. In Section 3, the asymptotic properties of the
proposed estimators are presented. Extensive numerical studies
and a real data example are given in Section 4. Finally, we con-
clude the article with a brief discussion in Section 5. All detailed
techniques are relegated to the appendix in the supplementary
materials.

2. Model and Methodology

2.1. Model Setup

Let Yit ∈ R
1 be a continuous response collected from the ith

(1 ≤ i ≤ N) region at time point t (1 ≤ t ≤ T). For a given
i, {Yit : 1 ≤ t ≤ T} constitutes a time series. To model this
time series dependence, the following autoregressive model is
considered:

Yit = αiYi(t−1) + εit , (2.1)

where αi is the autocorrelation coefficient characterizing region
i’s temporal dependence, and εit is the error term. In addition,
to guarantee the stationarity of the time series, we assume
maxi |αi| < δ < 1 for some positive constant δ. It is noted
that the intercept is omitted for simplicity, which implies that
the {Yit} values need to be centralized before the formal data
analysis. Next, define Et = (ε1t , . . . , εNt)�. Assume Et has
a spatially dependent structure, which is characterized by the
following SEM (see Ord 1975; Anselin 1980; LeSage and Pace
2009; Lee, Liu, and Lin 2010):

Et = ρWEt + εt , (2.2)

where ρ ∈ R
1 is the spatial autoregressive parameter satisfying

|ρ| < 1 (Carlin, Gelfand, and Banerjee 2014), and εt =
(ε1t , . . . , εNt)� ∈ R

N is the residual vector with a mean of 0 and
covariance matrix σ 2I ∈ R

N×N . Here, I stands for an N × N
identity matrix. In addition, we assume that E(ε4

it) < ∞ and
that εt is independent and identically distributed over time t.
The weight matrix W is the row-normalized adjacency matrix.
One typical adjacency matrix is defined as A = (aij) ∈ R

N×N ,
where aij = 1 if region i is bordered by region j, and aij = 0
otherwise. Then, W = (wij) ∈ R

N×N is defined as wij = aij/di,
where di = ∑N

j=1 aij is the total number of regions that border
i. By (2.2), we know that Et = (I − ρW)−1εt . As a result, Et
follows a distribution with a mean of 0 and covariance matrix
�t = � = (σij) = σ 2(I − ρW)−1(I − ρW�)−1.

Define F as the σ -field generated by {(Yit , Xit) : 1 ≤ i ≤
N, 1 ≤ t ≤ T}. To cope with the missing data problem, define a
binary indicator Zit ∈ {0, 1} such that

P(Zit = 1|F) = exp(β�Xit)

1 + exp(β�Xit)
= pit , (2.3)

where Zit = 1 indicates that Yit is observed, and Zit = 0
indicates that Yit is missing. Accordingly, the Zit values are
conditionally independent with each other on F . The random
variable Xit = (Xit,1, . . . , Xit,p)� ∈ R

p are p-dimensional
covariates with no missing value, and β = (β1, . . . , βp)� ∈ R

p

is the associated regression coefficient vector. Conditional onF ,
the Zit values are assumed to be mutually independent.

2.2. Least Squares Estimation of Temporal Dependence

We first consider how to estimate the AR model (2.1) in the
presence of missing data. A straightforward solution would be
to consider the “complete data” only. Complete data refer to
those that are completely observed pairs (Yit , Yi(t−1)). Accord-
ingly, the least squares objective function can be constructed as
Q1(αi) = ∑T

t=2 ZitZi(t−1)(Yit − αiYi(t−1))
2. The corresponding

least squares estimator (LSE) is given by the following:

α̂LSE
i =

{ T∑
t=2

ZitZi(t−1)YitYi(t−1)

}{ T∑
t=2

ZitZi(t−1)Y2
i(t−1)

}−1
.

One can verify that E{Q1(αi)|F} = ∑T
t=2 pitpi(t−1)(Yit −

αiYi(t−1))
2, which suggests that different weights (e.g., pit ,

pi(t−1)) are expected for different sample pairs (Yit , Yi(t−1)). In
other words, each sample pair is no longer treated equally in the
estimation process. This might make α̂LSE

i less efficient. To fix
this problem, we propose the following weighted least squares
type of objective function as Q2(αi) = ∑T

t=2(pitpi(t−1))
−1

(ZitZi(t−1))(Yit − αiYi(t−1))
2. This leads to the following WLSE

as follows:

α̃WLSE
i =

{ T∑
t=2

ZitZi(t−1)YitYi(t−1)

pitpi(t−1)

}{ T∑
t=2

ZitZi(t−1)Y2
i(t−1)

pitpi(t−1)

}−1
.

The WLSE is an infeasible estimator because its computation
involves the unknown parameter β and thus pit values. To
address the unknown parameter, we replace β in α̃WLSE

i by its
maximum likelihood estimator β̂ . This leads to the following
feasible WLSE as follows:

α̂WLSE
i =

{ T∑
t=2

ZitZi(t−1)YitYi(t−1)

p̂it p̂i(t−1)

}{ T∑
t=2

ZitZi(t−1)Y2
i(t−1)

p̂it p̂i(t−1)

}−1
.

Here, p̂it = exp(β̂�Xit)/{1 + exp(β̂�Xit)}, and β̂ is defined as
β̂ = argmaxβ
�(β), where 
�(β) = ∑N

i=1
∑T

t=2

[
Zitβ�Xit −

log{1 + exp(β�Xit)}
]

.

2.3. Maximum Likelihood Estimation of Spatial
Dependence

We next consider how to estimate spatial dependence in the
model (2.2) in the presence of missing data. In this case,
complete data refer to the completely observed residual pairs
(εit , εjt). To this end, a log maximum likelihood objective
function for θ = (ρ, σ 2)� omitting some constants can be
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constructed as follows:


0(θ) = 
0(ρ, σ 2) = T − 1
2

log
∣∣
(ρ)

∣∣ − N(T − 1)

2
log(σ 2)

− 1
2σ 2

T∑
t=2

N∑
i=1,j=1

ZitZi(t−1)ZjtZj(t−1)εitεjtwij(ρ),

where 
(ρ) = (I−ρW�)(I−ρW), and wij(ρ) is the (i, j)th ele-
ment in the matrix 
(ρ). Similarly, one can verify the following
equation:

E{
0(ρ, σ 2)|F} = T − 1
2

log
∣∣
(ρ)

∣∣ − N(T − 1)

2
log(σ 2)

− 1
2σ 2

T∑
t=2

{ ∑
i �=j

pitpi(t−1)pjtpj(t−1)εitεjtwij(ρ)

+
N∑

i=1
pitpi(t−1)ε

2
itwii(ρ)

}
.

It should be noted that εit = Yit − αiYi(t−1). Therefore, the
expected weight for εitεjt is pitpi(t−1)pjtpj(t−1). As a result, each
residual pair is no longer treated equally in the estimation
process, which leads to a less efficient estimator. To fix the
problem, we propose the following weighted log-likelihood type
of objective function:


1(θ) = 
1(ρ, σ 2) = T − 1
2

log
∣∣
(ρ)

∣∣ − N(T − 1)

2
log(σ 2)

− 1
2σ 2 f (ρ),

(2.4)
where f (ρ) is given by the following:

f (ρ) =
T∑

t=2

{∑
i �=j

ZitZi(t−1)ZjtZj(t−1)

pitpi(t−1)pjtpj(t−1)

εitεjtwij(ρ)

+
N∑

i=1

ZitZi(t−1)

pitpi(t−1)

ε2
itwii(ρ)

}

=
T∑

t=2
E�

t ZtP−1
t

{

(ρ) − diag(
(ρ))

}
P−1

t ZtEt

+
T∑

t=2
E�

t diag
{

(ρ)

}
P−1

t ZtEt

=
T∑

t=2
E�

t At(ρ)Et ,

Pt = diag{pitpi(t−1)} ∈ R
N×N , Zt = diag{ZitZi(t−1)} ∈

R
N×N , and At(ρ) = ZtP−1

t {
(ρ) − diag(
(ρ))}P−1
t Zt +

diag(
(ρ))P−1
t Zt .

To optimize (2.4), we first derive the maximum likelihood
estimator of σ 2 by letting its first-order derivative equal 0, which
leads to σ̃ 2 = {N(T − 1)}−1f (ρ). We then replace σ 2 by σ̃ 2

in (2.4) and obtain a profiled log-likelihood function as follows
(omitting some constants):


∗
1(ρ) =T − 1

2
log

∣∣
(ρ)
∣∣ − N(T − 1)

2
log

{ T∑
t=2

E�
t At(ρ)Et

}
.

(2.5)

This leads to the WMLE as ρ̃WMLE = argmaxρ
∗
1(ρ). The

WMLE is an infeasible estimator since its computation allows
unknown parameters αi and β . To fix this problem, we replace
αi with α̂WLSE

i and β with β̂ . As a result, we can obtain the
estimated Êt and Ât(ρ) by replacing εit and pit with ε̂it = Yit −
α̂WLSE

i Yi(t−1) and p̂it , respectively. In this way, we can obtain a
feasible weighted log-likelihood objective function as follows:


2(θ) = 
2(ρ, σ 2) = T − 1
2

log
∣∣
(ρ)

∣∣ − N(T − 1)

2
log(σ 2)

− 1
2σ 2

T∑
t=2

Ê�
t Ât(ρ)Êt ,

(2.6)

where Ât(ρ) = ZtP̂−1
t {
(ρ) − diag(
(ρ))}P̂−1

t Zt +
diag(
(ρ))P̂−1

t Zt , and Êt = (ε̂1t , . . . , ε̂Nt)�. Similar to (2.5),
we can obtain a feasible profiled log-likelihood function as
follows:


∗
2(ρ) =T − 1

2
log

∣∣
(ρ)
∣∣ − N(T − 1)

2
log

{ T∑
t=2

Ê�
t Ât(ρ)Êt

}
.

(2.7)

This leads to a feasible estimator ρ̂WMLE = argmaxρ
∗
2(ρ).

Remark. An estimator that is likely more efficient for the tem-
poral dependence α = (α1, . . . , αN)� ∈ R

N can be obtained
when the spatial dependence is given. Specifically, the quantity
in (2.4) can be rewritten as follows:


∗
3(ρ, σ 2, α) = T − 1

2
log

∣∣
(ρ)
∣∣ − N(T − 1)

2
log(σ 2)

− 1
2σ 2

T∑
t=2

{
Yt − diag(Yt−1)α

}�

× At(ρ)
{
Yt − diag(Yt−1)α

}
,

(2.8)

which is a function of ρ, σ 2, and α. Here, Yt = (Y1t , . . . , YNt)�
∈ R

N . By temporarily fixing ρ and σ 2 and optimizing 
∗
3 with

respect to α, this leads to another estimated α as ᾱ as follows:

ᾱ =
{ T∑

t=2
diag(Yt−1)At(ρ)diag(Yt−1)

}−1

×
{ T∑

t=2
diag(Yt−1)At(ρ)Yt

}
.

The unreported simulation studies show that ᾱ has basically the
same efficiency as the proposed α̂WLSE. The reason might be
because the quantity in At(ρ) of (2.8) can be split into two parts
according to whether i = j or not. For the part with i �= j,
it requires that Zit , Zi(t−1), Zjt , and Zj(t−1) are all nonmissing.
This is a particularly difficult condition to satisfy in the context
of missing data. However, the part with i = j only requires
that Zit and Zi(t−1) are nonmissing, which happens to be the
proposed estimator (e.g., α̂WLSE). For simplicity, we focus on the
asymptotic properties for the proposed α̂WLSE estimator.
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3. Theoretical Results

3.1. Technical Conditions

Let 
̇(ρ) and 
̈(ρ) be the first- and second-order of 
(ρ), that
is, 
̇(ρ) = d
(ρ)/dρ = −(W� + W) + 2ρW�W, 
̈(ρ) =
d2
(ρ)/d2ρ = 2W�W. Denote Ȧt(ρ) = dAt(ρ)/dρ, and
Ät(ρ) = d2At(ρ)/dρ2. To investigate the asymptotic properties
of the proposed estimators of αi (i.e., infeasible and feasible
WLSEs), and ρ (i.e., infeasible and feasible WMLEs), we con-
sider the following technical conditions.

(C1) (Missing rate) Assume the expectation σ 2
1i =

E
(
Y2

i(t−1)ε
2
itp

−1
it p−1

i(t−1)

)
exists. There also exists a positive

matrix � = (�11, �12; �21, �22) such that

�11 = lim
N→∞(4N)−1E

(
2tr

[{
Ȧt(ρ)
(ρ)−1

}2]

+ tr2
{

Ȧt(ρ)
(ρ)−1
})

− (4N)−1tr2
{

̇(ρ)
(ρ)−1

}
�22 = lim

N→∞(4Nσ 4)−1E
(

2tr
[{

At(ρ)
(ρ)−1
}2]

+ tr2{At(ρ)
(ρ)−1}
)

− N(4σ 4)−1

�12 = �21 = lim
N→∞(4σ 2)−1tr

{

̇(ρ)
(ρ)−1

}
− (4Nσ 2)−1E

[
2tr

{
Ȧt(ρ)At(ρ)
(ρ)−2

}
+ tr

{
Ȧt(ρ)
(ρ)−1

}
tr

{
At(ρ)
(ρ)−1

}]
(C2) (Weight matrix) There exists a positive matrix � =

(�11, �12; �21, �22) such that �11 = limN→∞(2N)−1

tr
[{


−1(ρ)
̇(ρ)
}2

]
, �22 = (2σ 4)−1, and �12 = �21 =

limN→∞ −(2Nσ 2)−1tr{
−1(ρ)
̇(ρ)}.
(C3) (Diverging speed) For some finite positive constant c >

0, assume N1+c/T = O(1). As N → ∞, T also goes to
infinity, but at a faster speed.

These conditions are commonly used in the literature. Specif-
ically, Condition (C1) provides the restrictions of the missing
rate. It is worth noting that the missing rate should not be too
large. Furthermore, when there are no missing observations,
these conditions hold because they will reduce to the traditional
conditions for the time series and spatial autoregressive model.
Condition (C2) puts the constraint on the weight matrix. A
similar condition was also used by Sun and Wang (2019). It
should be noted that �22 is an extension of �22. When there is
no missingness, At(ρ) is equal to 
(ρ), and then �22 becomes
�22. Condition (C3) is a special case of T/N → ∞. It assumes
that T should be diverging faster than N. Otherwise, the uni-
form convergence rate of α̂i would be too slow. Accordingly,
unnecessary bias can be produced for the global parameter ρ̂.

3.2. Asymptotic Results

With the help of the above conditions, we then have the follow-
ing theorems. We first present the asymptotic theories for the
infeasible and feasible WLSEs of αi.

Theorem 1. Assume conditions (C1)–(C3). For any i ≥ 1, as
T → ∞, we have

√
T
(̃
αWLSE

i − αi
) →d N

(
0,

σ 2
1i

σ 4
Yi

)
,

Theorem 2. Assume conditions (C1)–(C3). For any i ≥ 1, as
T → ∞, we have

√
T
(̂
αWLSE

i − αi
) →d N

(
0,

σ 2
1i

σ 4
Yi

)
,

where σ 2
Yi

= σ 2
ii /(1 −α2

i ), and σ 2
ii is the ith diagonal element

of �. The proof of Theorems 1 and 2 are given in Appendices B
and C in the supplementary materials, respectively. According
to these two theorems, we can draw the conclusion that both
the infeasible estimator α̃WLSE

i and the feasible estimator α̂WLSE
i

are consistent and asymptotically normal. As one can see, the
theoretical results given in Theorems 1 and 2 hold as long as T
goes to infinity, having nothing to do with N. This result is not
surprising because Theorems 1 and 2 are established based on
model (2.1) and (2.3) from the given individual i only.

Next, we investigate the asymptotic properties for the infea-
sible and feasible estimators of the spatial dependence of ρ. To
perform this, we further define θ = (ρ, σ 2)� ∈ R

2. Theorem 3
presents the property of the infeasible WMLE of θ .

Theorem 3. Assume conditions (C1)–(C3) hold. As
min{N, T} → ∞, we have

√
NT

(
θ̃WMLE − θ

) →d N
(

0, �−1��−1
)

,

where � and � are defined as in conditions (C1) and
(C2), respectively. The proof of this theorem is given in
Appendix D in the supplementary materials; it suggests
that the infeasible θ̃WMLE is consistent and asymptotically
normal when some conditions hold. A two-step estimation
procedure is used to estimate the covariance. We assume Et
and (α, β) are given and use the sample versions of � and
�. For example, �11 can be estimated by �̂11 = {4N(T −
1)}−1 ∑T

t=2

(
2tr

[{
Ȧt(ρ)
(ρ)−1

}2] + tr2
{

Ȧt(ρ)
(ρ)−1
})

−
(4N)−1tr2

{

̇(ρ)
(ρ)−1

}
. In the first step, we estimate

heterogeneous dynamic (temporal) effects αi. Then, the spatial
effect ρ is estimated in the second step, which requires the order
of supi(α̂i − α). Thus, we assume N1+c/T = O(1). Similar to
θ̃WMLE, the asymptotic property for the feasible θ̂WMLE is given
in Theorem 4.

Theorem 4. Assume conditions (C1)–(C3) hold. As
min{N, T} → ∞, we have

√
NT

(
θ̂WMLE − θ

) →d N
(

0, �−1��−1
)

.

The proof of this theorem is shown in Appendix E in the supple-
mentary materials. For the estimation of the covariance matrix,
we use the estimated β̂ and α̂WLSE

i , and ε̂it = Yit −α̂WLSE
i Yi(t−1).
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4. Numerical Studies

4.1. Simulation Models

To assess the finite sample performance of the proposed meth-
ods, we present several simulation studies. For a given network
size N, the network adjacency matrix A = (aij) is simulated
as follows. We first generate N independent and identically
distributed random variables according to an exponential dis-
tribution with a mean of 10. Denote these variables by Ui with
1 ≤ i ≤ N. For each node i, we randomly select a sample size
of [Ui] from SF = {1, 2, . . . , N} without replacement, where
[Ui] stands for the smallest integer no less than Ui. Denote these
selected samples by Si. Define aij = 1 if j ∈ Si and aij = 0
otherwise. Last, let aii = 0 for every 1 ≤ i ≤ N. This leads to the
adjacency matrix A. Subsequently, W = (wij) can be obtained
by normalizing each row of A so that

∑N
j=1 wij = 1 for any i.

According to the model setup, once W is simulated, it is fixed
across all time points.

Next, for a given time point t, the spatial error term Et is
generated according toEt = (I−ρW)−1εt , where εt is simulated
from a normal distribution with a mean of 0 and covariance σ 2I.
We set σ 2 = 4, and consider ρ = 0.1. Then, with the simulated
spatial error term, the Yit sequence can be generated as follows.
We first set Yi0 = 0 for i = 1, 2, . . . , N. Then, we generate Yit
sequentially according to model (2.1) for t = 1, . . . , T0 + T,
where αi is stimulated from a uniform distribution between 0.2
and 0.7, and T0 is a prespecified integer. For example, in this
work, we assume T0 = 1000. We then redefine Yit = Yi,t−T0 ,
where t = T0 + 1, . . . , T + T0. This leads to the final sequence
of {Yit : 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

We next consider two missing mechanism cases, that is,
MCAR and MAR. According to model (2.3), for each node
i, Yit is set to be nonmissing with the probability of pit . For
illustration, we consider here one covariate Xit ∈ R

1. Then,
the nonmissing probability is set to be {exp(β0 + β1Xit)}/{1 +
exp(β0 + β1Xit)}, where β0 is a tuning parameter controlling
the missing rate, and β1 is the corresponding coefficient. We
consider two different values of β0, that is, β0 = 1 and 0.5,
which results in a missing rate of approximately 25% and 35%
on average, respectively. In the MCAR case, the covariate Xit
is simulated from a standard normal distribution. In the MAR
case, we set Xit = YitYi(t−1) + eit , where eit is generated from a
standard normal distribution. Finally, for each experiment, β1
is set to be 0.1. For a reliable evaluation, each experiment is
randomly replicated M = 1000 times.

4.2. Performance of Least Squares Estimation

According to Theorems 1 and 2, we know that both the infeasi-
ble and feasible WLSEs are

√
T-consistent and asymptotically

normal. To investigate the asymptotic performance of these
estimators, we consider here various time spans (i.e., T =
200, 500, 1000, 2000). In addition, different network sizes are
considered (i.e., N = 100, 200, 400). Let θ̂ (m) = (θ̂

(m)

k )� =
(α̂

LSE(m)
i , α̃WLSE(m)

i , α̂WLSE(m)
i )� be the estimators obtained in

the mth replication. We employ the following two measures
to gauge the performance of the proposed method. First, for
a given parameter θk with 1 ≤ k ≤ 3, the root-mean-square

Table 1. Simulation results for the MCAR case with a missing rate of 25% (β0 = 1)
and 35% (β0 = 0.5).

ρ = 0.1, β0 = 1 ρ = 0.1, β0 = 0.5

N T α̂OLS
i α̃WLS

i α̂WLS
i α̂OLS

i α̃WLS
i α̂WLS

i

100

200 8.55 8.55(93.9) 8.55(93.9) 10.10 10.11(94.0) 10.11(94.3)

500 5.36 5.36(94.7) 5.36(94.7) 6.30 6.31(94.6) 6.31(94.7)

1000 3.76 3.77(94.9) 3.77(94.9) 4.43 4.43(94.8) 4.43(94.9)

2000 2.66 2.66(94.9) 2.66(94.9) 3.12 3.13(95.1) 3.13(95.2)

200

200 8.62 8.62(94.0) 8.62(94.0) 10.15 10.16(94.0) 10.16(94.4)

500 5.39 5.40(94.7) 5.40(94.7) 6.35 6.36(94.6) 6.36(94.8)

1000 3.80 3.81(94.9) 3.81(94.9) 4.47 4.48(94.9) 4.48(95.0)

2000 2.69 2.69(95.1) 2.69(95.0) 3.16 3.16(95.0) 3.16(95.0)

400

200 8.60 8.60(94.1) 8.60(94.1) 10.16 10.18(93.9) 10.18(94.4)

500 5.41 5.41(94.7) 5.41(94.7) 6.36 6.37(94.7) 6.37(94.8)

1000 3.81 3.81(94.9) 3.81(94.9) 4.48 4.48(94.9) 4.48(95.0)

2000 2.69 2.70(95.0) 2.70(95.0) 3.17 3.17(95.0) 3.17(95.0)

NOTE: The RMSE values (×10−2) are reported for every estimator. The CP (in %) for
the infeasible WLSE (α̃WLS

i ) and feasible WLSE (α̂WLS
i ) are given in parentheses.

Table 2. Simulation results for the MAR case with a missing rate of 25% (β0 = 1)
and 35% (β0 = 0.5).

ρ = 0.1, β0 = 1 ρ = 0.1, β0 = 0.5

N T α̂OLS
i α̃WLS

i α̂WLS
i α̂OLS

i α̃WLS
i α̂WLS

i

100

200 9.47 8.16(94.5) 8.16(94.2) 11.59 9.37(94.7) 9.37(94.6)

500 7.88 5.16(94.9) 5.16(94.7) 10.15 5.95(94.8) 5.95(94.8)

1000 7.27 3.64(94.9) 3.64(94.9) 9.63 4.21(95.0) 4.20(95.1)

2000 6.97 2.58(95.0) 2.57(95.0) 9.37 2.98(95.1) 2.98(95.1)

200

200 9.64 8.26(94.6) 8.26(94.3) 11.86 9.54(94.6) 9.54(94.5)

500 8.01 5.23(94.9) 5.23(94.8) 10.35 6.05(94.9) 6.06(94.9)

1000 7.43 3.70(95.0) 3.7(95.0) 9.84 4.28(95.0) 4.28(95.0)

2000 7.13 2.62(95.0) 2.62(95.0) 9.59 3.04(95.0) 3.04(95.0)

400

200 9.64 8.25(94.6) 8.25(94.3) 11.85 9.51(94.7) 9.51(94.6)

500 8.04 5.24(94.9) 5.24(94.8) 10.39 6.06(94.9) 6.06(94.9)

1000 7.46 3.70(95.0) 3.70(94.9) 9.87 4.29(95.1) 4.29(95.0)

2000 7.14 2.62(95.0) 2.62(95.0) 9.61 3.04(95.0) 3.04(95.0)

NOTE: The RMSE values (×10−2) are reported for every estimator. The CP (in %) for
the infeasible WLSE (α̃WLS

i ) and feasible WLSE (α̂WLS
i ) are given in parentheses.

error is evaluated by RMSEk = {M−1 ∑M
m=1(θ̂

(m)

k − θk)
2}1/2.

Second, for 1 ≤ k ≤ 3, a 95% confidence interval is constructed
for θk as CI(m)

k = (θ̂
(m)

k − z0.975ŜE(m)

k , θ̂ (m)

k + z0.975ŜE(m)

k ),
where ŜEm

k is the computed standard error according to the
asymptotic covariance in Theorem 1 and Theorem 2 by plug-
ging in the resulting estimators, respectively, and zα is the αth
quantile of a standard normal distribution. Consequently, the
empirical coverage probability (ECP) is computed as ECPk =
M−1 ∑M

m=1 I(θk ∈ CI(m)

k ), where I(·) is the indicator function.
For a given sample size T, we compute the average values

of RMSEk and ECPk across different i. Simulation results are
presented in Tables 1 and 2. Table 1 displays the results for
the MCAR case. We can see (i.e., N = 100) that the average
RMSE value decreases as the sample size T increases for all
three estimators. Moreover, the empirical coverage probability
for α̃WLSE

i and α̂WLSE
i remains stable around the nominal level

of 95%. Another interesting finding is that with a lower missing
rate, the average RMSE is smaller. The pattern is nearly the same
across different settings of N. Table 2 presents the results for the
MAR case. From the table, we can see that the traditional OLS
estimator no longer works, whereas both WLSEs work well. The
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Table 3. Simulation results for the MCAR case with a missing rate of 25% (β0 = 1)
and 35% (β0 = 0.5).

ρ = 0.1, β0 = 1 ρ = 0.1, β0 = 0.5

N T ρ̃WML ρ̂WML ρ̃WML ρ̂WML

100

100 3.97(94.2) 4.00(94.1) 5.31(95.1) 5.34(94.2)
200 2.71(94.7) 2.71(95.0) 3.63(95.2) 3.64(95.0)
500 1.83(94.0) 1.83(93.8) 2.50(93.7) 2.51(94.1)

200

100 2.72(94.3) 2.69(94.6) 3.79(94.0) 3.79(93.8)
200 1.86(95.0) 1.89(95.3) 2.55(95.3) 2.54(95.0)
500 1.27(94.8) 1.24(93.9) 1.72(94.6) 1.70(94.8)

500

100 1.75(94.3) 1.70(94.5) 2.41(93.9) 2.41(94.4)
200 1.17(95.2) 1.20(94.9) 1.64(94.6) 1.63(94.9)
500 0.79(94.3) 0.79(94.5) 1.09(95.1) 1.09(94.9)

The RMSE values (×10−2) are reported for every estimator. The CP (in %) for the
infeasible WMLE (ρ̃WML) and feasible WMLE (ρ̂WML) are given in parentheses.

Table 4. Simulation results for the MAR case with a missing rate of 25% (β0 = 1)
and 35% (β0 = 0.5).

ρ = 0.1, β0 = 1 ρ = 0.1, β0 = 0.5

N T ρ̃WML ρ̂WML ρ̃WML ρ̂WML

100

100 3.91(92.7) 3.92(92.9) 5.26(93.3) 5.24(93.3)
200 2.67(93.6) 2.64(93.7) 3.61(93.4) 3.58(93.8)
500 1.77(92.3) 1.77(92.3) 2.42(93.4) 2.41(92.1)

200

100 2.62(93.7) 2.61(94.0) 3.64(93.6) 3.61(94.1)
200 1.83(94.4) 1.82(95.0) 2.47(93.6) 2.44(94.6)
500 1.21(94.7) 1.20(94.5) 1.66(94.6) 1.65(94.9)

500

100 1.68(93.7) 1.67(93.7) 2.29(94.1) 2.27(93.9)
200 1.12(95.2) 1.12(94.5) 1.60(94.4) 1.59(94.4)
500 0.81(92.1) 0.81(93.0) 1.07(94.1) 1.07(94.2)

NOTE: The RMSE values (×10−2) are reported for every estimator. The CP (in %) for
the infeasible WMLE (ρ̃WML) and feasible WMLE (ρ̂WML) are given in parentheses.

RMSE value for α̃WLSE
i and α̂WLSE

i decreases as the sample size
T increases. Furthermore, the empirical coverage probability
remains around the nominal level of 95%. All of the results
corroborate the theoretical results in Theorems 1 and 2.

4.3. Performance of Maximum Likelihood Estimation

Theorem 3 and 4 show that both the infeasible and feasible
WMLEs for parameter ρ are

√
NT-consistent and asymptot-

ically normal. To verify the asymptotic performance of these
estimators, we consider different network sizes (N = 100, 200,
and 500) and different time spans (T = 100, 200, and 500).
Similar to the LSEs of αi, we also use the RMSE and ECP
to evaluate the performance of the proposed estimators of ρ.
Detailed simulation results are summarized in Tables 3 and 4,
from which we can draw the following conclusions. First, in the
MCAR case presented in Table 3, we find that both the infeasible
and feasible WMLEs are consistent because their RMSE values
decrease toward 0 as N → ∞ and T → ∞. Second, the
empirical coverage probabilities are fairly close to their nominal
level 95%, which suggests that the estimated standard errors (i.e.,
ŜE) are well approximated. Third, quantitatively similar results
are obtained for the MAR case shown in Table 4, which implies
the two estimators also work well in the MAR missingness
mechanism. All of these findings confirm that the proposed
estimators ρ̃WMLE and ρ̂WMLE are indeed consistent and asymp-
totically normal.

4.4. A Real Data Example

As our last example, we present here a real data study based
on Beijing PM2.5 levels. The original data were generously
donated by Professor Songxi Chen from Peking University.
The dataset can be found at the UC Irvine Machine Learning
Repository (http://archive.ics.uci.edu/ml/index.php). It contains
hourly PM2.5 readings collected from 11 different state-owned
monitoring sets. For illustration purposes, we use the data from
one particular month, which leads to a total of T = 744 hourly
recordings for each of the N = 11 monitoring sites.

For this example, the response Yit is the standardized PM2.5
reading collected from the ith location (i.e., one state-owned
monitoring site) and the tth time point (i.e., one particular hour
in a day). Due to some unknown practical reasons, the collected
PM2.5 data are often missing for some sites. For a given time
point t, we define this time point to be “complete” if all Yit values
are observed for every 1 ≤ i ≤ N. We then find that the
percentage of the complete time points is as low as 89%. For the
remaining 11% of the time points, a standard spatial autoregres-
sion model cannot be estimated due to incompleteness.

To capture the spatial dependence, two different types of
adjacency matrices are constructed. The first is a binary adja-
cency matrix. In this case, we define aij = 1 if the geographical
distance of the two monitoring sites (i.e., i �= j) is less than 10
kilometers. Otherwise, we define aij = 0. The second adjacency
matrix is a value-based adjacency matrix. In this case, we define
aij to be the straight-line distance between two sites. In this case
aij’s are positive continuous variables and thus are no longer
binary. Before the formal analysis, both adjacency matrices are
row normalized.

To study the missingness mechanism, the following three
covariates are considered. They are temperature (◦C), pressure
(hPa), and wind speed (m/s). The logistic regression results
show that the coefficients for the above three covariates are
−0.06, −0.05, and 0.29, respectively. All of them are statistically
significant at the 1% level. This result suggests that all three
meteorological indicators have significant influence on the miss-
ingness of PM2.5. With the help of this logistic regression model,
we are able to compute the spatial autocorrelation estimate. We
find that the estimated spatial correlation coefficients are given
by 0.441 and 0.509 for the two different adjacency matrices. The
estimated standard errors are 0.010 and 0.013, respectively. This
result suggests that the estimated spatial correlation coefficients
are statistically significant at the 1% level for both cases. Thus,
the spatial dynamics of the PM2.5 readings from different mon-
itoring sites can be statistically measured.

5. Conclusion

In this article, we develop a novel estimation method to ana-
lyze missing response issues in a dynamic SEM. The proposed
method makes use of the information from temporal depen-
dence, spatial dependence and exogenous regression covariates.
To capture the temporal dependence, we apply an AR(1) process
with varied autocorrelation coefficients. The spatial dependence
is characterized implementing the widely used SEM. A logistic
regression model with exogenous covariates is used to reflect the
missing mechanism. The WLSE for temporal dependence and

http://archive.ics.uci.edu/ml/index.php
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the WMLE for spatial dependence are proposed for parameter
estimation in the presence of missing data. Compared with
traditional estimators, the newly proposed WLSE and WMLE
are more efficient. The associated consistency and asymptotic
normality of these two estimators are also established. Finally,
the performance of the WLSE and WMLE are demonstrated by
both simulation studies and a real data example.

To conclude this article, we discuss here several interesting
topics for future study. First, the proposed AR(1) effect can
be generalized to an AR(p) effect to characterize a more suffi-
cient temporal dynamic dependence. The associated theoretical
results can be inferred from the current theorems. However,
the practical efficiency would be reduced because of the sub-
stantially decreased sample size. Therefore, determining how to
improve the estimation efficiency would be an interesting and
important research problem for a separate study in the future.
Second, the cross-sectional relationships between different indi-
viduals could be considered in the future. Third, the missingness
mechanism can be easily extended to a new mechanism with
heterogeneous β coefficients for better flexibility, which requires
further research. Finally, the imputation techniques based on
our proposed estimators can also be developed.
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