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Abstract Naive Bayes (NB) is one of the most popular classification methods. It is particularly useful when

the dimension of the predictor is high and data are generated independently. In the meanwhile, social network

data are becoming increasingly accessible, due to the fast development of various social network services and

websites. By contrast, data generated by a social network are most likely to be dependent. The dependency is

mainly determined by their social network relationships. Then, how to extend the classical NB method to social

network data becomes a problem of great interest. To this end, we propose here a network-based naive Bayes

(NNB) method, which generalizes the classical NB model to social network data. The key advantage of the

NNB method is that it takes the network relationships into consideration. The computational efficiency makes

the NNB method even feasible in large scale social networks. The statistical properties of the NNB model are

theoretically investigated. Simulation studies have been conducted to demonstrate its finite sample performance.

A real data example is also analyzed for illustration purpose.
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1 Introduction

Naive Bayes [13, 18] is one of the most popular statistical classification methods. Its spirit has been

widely used and generalized even in recent literature with various applications, which include but are not

limited to credit scoring for credit applicants (see [1]), classification of Chinese text documents (see [11]),

risk prediction in genetic studies (see [20]), and feature augmentation (see [9]). The naive Bayes model is

especially useful when the dimension of the predictor is high, which makes density estimation unattractive.

The assumptions of the naive Bayes model are rather optimistic. However, in many cases, the flexible

approach could perform better than far more sophisticated alternatives even under these assumptions

(see [13,23]).

The aforementioned methods and applications consider no social network relationship (e.g., friendship,

kinship) among individuals. Development of Internet technology makes more and more social network

services and websites become popular (e.g., Facebook, Twitter, Sina Weibo, WeChat). As a consequence,

*Corresponding author

admin
加亮

http://crossmark.crossref.org/dialog/?doi=10.1007/s11425-017-9209-6&domain=pdf
https://doi.org/10.1007/s11425-017-9209-6
math.scichina.com
link.springer.com
https://doi.org/10.1007/s11425-017-9209-6
jing.zhou
高亮

jing.zhou
高亮



628 Huang D Y et al. Sci China Math April 2018 Vol. 61 No. 4

social network data are becoming increasingly accessible, since relationships among individuals could be

collected. Users of the social network services or websites could be in large scale. Social network data

refer to a group of nodes or individuals, and the relationships between them (see [26]). Various statistical

tools have been proposed to model the nodes and their relationships in social network. The relevant

literature includes but is not limited to, the Erdös-Rényi model (see [8]), the p1 model (see [14]), the

stochastic block model (see [3, 6, 22, 25]), and the exponential random graph model (see [15, 16]). The

abundant studies help us understand that the relationships between the nodes make them no longer

independent. This may make the traditional classification methods inappropriate in this case.

In the field of machine learning, collective classification (see [7]) has been popularly used to deal with

classification problems in network data. This approach makes inference about individual’s class label

based on the attributes of the individual’s own and its connected friends. But there are still two main

bottlenecks of the collective classification approach. First, despite the practical application in network

data, its theoretical properties have not been clearly investigated. Second, the approximate inference

relies on iterative algorithms, thus the computational cost could be high (see [19,21]). As a consequence,

the approach could hardly be applied in large scale social network data. In addition, another type of

methods use the statistical metrics of network as extra input features of classifiers, then many exiting

classification methods become feasible on network data (see [30]). For example, autologistic (see [24])

is a representative method, which treats some network metrics as extra predictors in logistic regression.

However, both methods have not explored the generation mechanism of network structure.

This motivates us to propose a new approach, which is called the network-based naive Bayes (NNB)

model for social network. Specifically, consider a social network with a finite number of nodes. Then, the

objective of the NNB method is to classify each node into one of the predefined classes. However, different

from the classical naive Bayes method, the NNB approach takes both the nodal attributes and the social

network relationships into consideration. Empirical evidence in both simulations and a real Sina Weibo

(a Twitter-type social media in China) example shows that the prediction accuracy outperforms that of

the classical naive Bayes model. We show that the computational cost of prediction based on the NNB

model is feasible even when the network size is in large scale. Furthermore, the statistical properties of

the NNB model have been theoretically investigated.

The rest of the article is organized as follows. The NNB model is introduced in Section 2. Both the

classification rule and the theoretical properties are established in this section. In Section 3, a number

of simulation studies have been conducted to demonstrate the performance of the proposed approach. A

real data example in Sina Weibo is also analyzed for empirical evidence. Concluding remarks are given

in Section 4 and all technical proofs are left to the appendix.

2 Methodology

2.1 Network-based naive Bayes model

Let {Yi, Xi} be the observation collected from the i-th (1 6 i 6 n) node of the network, where

Yi ∈ {1, . . . ,K} is the class label of the i-th node, Xi = (Xi1, . . . , Xid)
T ∈ {0, 1}d is the associated

d-dimensional binary predictor (i.e., attributes of node i), and n is the size of the social network. For

convenience, we write Y = (Y1, . . . , Yn)
T ∈ {1, . . . ,K}n and X = (X1, . . . , Xn)

T ∈ {0, 1}n×d. Next, define

αk = P(Yi = k) > 0 and
∑K

k=1 αk = 1. Then, we assume that Xi1, . . . , Xid are independent with each

other given Yi, and the conditional probability is given by

P(Xi |Yi = k) =
d∏

j=1

µ
Xij

kj (1− µkj)
1−Xij , (2.1)

where µkj = P(Xij = 1 |Yi = k) ∈ (0, 1). This is a similar assumption with that of the classical naive

Bayes model (see [13,18]).

To describe the social network structure, define A(n) = (ai1i2) ∈ {0, 1}n×n as the adjacency matrix,

where ai1i2 = 1 if node i1 follows node i2, otherwise ai1i2 = 0. Note that A(n) could be asymmetric
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because node i1 follows node i2 does not mean that node i2 follows node i1. We follow the tradition

and let aii = 0 for any 1 6 i 6 n. Conditional on Y and X, assume different edges (i.e., ai1i2 ’s) are

independent with each other and define the link probability as

P(ai1i2 = 1 |Y,X) = P(ai1i2 = 1 |Yi1 = k1, Yi2 = k2) = πk1k2 , (2.2)

where k1, k2 ∈ {1, . . . ,K} and πk1k2 ∈ (0, 1). It is remarked that (2.2) assumes that X and A(n) are

independent given Y, and the distribution of link ai1i2 only depends on class labels Yi1 and Yi2 . As a

result, social network formation is only determined by the class labels. Both (2.1) and (2.2) constitute

the network-based naive Bayes (NNB) model, which can be represented as,

P(Y,X,A(n)) =

{ n∏
i=1

P(Yi)

}{ n∏
i=1

d∏
j=1

P(Xij |Yi)

}{ ∏
i1 ̸=i2

P(ai1i2 |Yi1 , Yi2)

}
. (2.3)

Write θ = (αT, vec(µ)T, vec(π)T)T, α = (α1, . . . , αK)T ∈ RK , µ = (µkj) ∈ RK×d and π = (πk1k2) ∈
RK×K , where vec(·) represents the vectorization of a matrix. The likelihood function could be represent-

ed as

L(θ) =
[ n∏
i=1

K∏
k=1

α
I(Yi=k)
k

][ n∏
i=1

d∏
j=1

K∏
k=1

{µXij

kj (1− µkj)
1−Xij}I(Yi=k)

]

×
[ ∏
i1 ̸=i2

∏
k1,k2

{(πk1k2)
ai1i2 (1− πk1k2)

1−ai1i2 }I(Yi1=k1,Yi2=k2)

]
. (2.4)

By maximizing the above likelihood function, we can get the maximum likelihood estimator which is

denoted by θ̂ = (α̂T, vec(µ̂)T, vec(π̂)T)T = argmaxθP(Y,X,A(n) | θ). More specifically,

α̂k = n−1
n∑

i=1

I(Yi = k),

µ̂kj =

{ n∑
i=1

I(Yi = k)

}−1 n∑
i=1

XijI(Yi = k),

π̂k1k2 =

{ ∑
i1 ̸=i2

I(Yi1 = k1, Yi2 = k2)

}−1 ∑
i1 ̸=i2

ai1i2I(Yi1 = k1, Yi2 = k2).

It is remarked that the model definitions (2.1) and (2.2) could exhibit in much more complex form.

The definitions adopted here are for simplicity and feasibility even in large scale social network. As

one can see, the numerators and denominators of these estimators are all counting statistics, which

can be simply computed. The computational complexity is comparable with the network density (i.e.,

Density = (n2 −n)−1
∑

i̸=j aij). Thus the parameters could be easily estimated even in large scale social

network. Furthermore, one can easily verify that the numerators and denominators of these estimators

are also summations of independent variables. Then, by the law of large numbers, we have |α̂k − αk|
= OP(n

−1/2), |µ̂kj −µkj | = OP(n
−1/2), and |π̂k1k2 − πk1k2 | = OP(n

−1/2) (see Lemma B.1 in Appendix B

for more details). Note that, µ̂ does not depend on A(n), and π̂ does not depend on X.
Remark 2.1. Model (2.3) assumes that predictor and network structure are equally important. To

make it more flexible, a tuning parameter could be introduced to control the weight of the predictor

and the network structure. Define Z ∈ {0, 1} with probability P(Z = 1) = ω, which is marginally

independent of Y. Also assume P(X,A(n) |Y, Z = 1) = P(A(n) |Y) and P(X,A(n) |Y, Z = 0) = P(X |Y).
Thus P(X,A(n),Y) = P(Y){ωP(A(n) |Y)+(1−ω)P(X |Y)}. ω is the weight parameter which balances two

sources of information, i.e., the network and the predictor. When ω = 0, only the predictor information

is included; while when ω = 1, only the network structure is considered. When 0 < ω < 1, the posterior

probability P(Yn+1 = t |Y,X, Xn+1,A(n+1)) is proportional to

P(Yn+1 = t){ωP(A(n+1) |Y, Yn+1 = t) + (1− ω)P(X, Xn+1 |Y, Yn+1 = t)}.
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Based on this posterior probability, a nonlinear prediction rule can be obtained. For simplicity, we omit

the weight parameter and assume equal importance of information from network structure and predictor.

2.2 Classification rule

As is known to all, the most important task of classification is to predict the unknown class labels. The

prediction for the NNB model is not that intuitive as the classical naive Bayes model. It is because nodes

are no longer independent due to the incorporation of the social network structure. It is assumed that

when the (n + 1)-th node arrives, (1) the associated predictor Xn+1, and (2) the relationships between

(n + 1)-th node and other observed nodes {ai,n+1, an+1,i}16i6n could be collected. Then we intend to

predict the unknown class label Yn+1 based on all collected data, which are, Y, X, Xn+1 and A(n+1).

After a simple calculation, the posterior probability can be represented as,

P (Yn+1 = t |Y,X, Xn+1,A(n+1))

∝ αt

[ d∏
j=1

µ
Xn+1,j

tj (1− µtj)
1−Xn+1,j

]

×
[ n∏
i=1

K∏
k=1

{(πkt)
ai,n+1(1− πkt)

1−ai,n+1(πtk)
an+1,i(1− πtk)

1−an+1,i}I(Yi=k)

]
. (2.5)

The symbol “∝” means “be proportional to”. In other words, the part which is not dependent on t is

omitted. Detailed derivation of (2.5) is left to Appendix A. In the next step, we maximize the posterior

probability (2.5) to get a predicted class label. Substituting the MLE of θ into (2.5), we can obtain the

following classification rule,

Ŷn+1 = argmax
16t6K

P̂ (Yn+1 = t |Y,X, Xn+1,A(n+1))

= argmax
16t6K

[
Ĉt +

d∑
j=1

g(µ̂tj)Xn+1,j +
K∑

k=1

{g(π̂kt)Un+1,k + g(π̂tk)Vn+1,k}
]
, (2.6)

where Ĉt = log α̂t +
∑d

j=1 log(1 − µ̂tj) + n
∑K

k=1 α̂k log
[
(1 − π̂kt)(1 − π̂tk)

]
for 1 6 t 6 K, g(z) =

log{z(1 − z)−1}, Un+1,k =
∑n

i=1 I(Yi = k, ai,n+1 = 1) and Vn+1,k =
∑n

i=1 I(Yi = k, an+1,i = 1) for

1 6 k 6 K. Note that, Ĉt, g(µ̂kj) and g(π̂kt) are all functions of parameter estimators, which have been

computed in the training step.

It is remarked that (2.6) is a comprehensive classification rule which is constructed based on two

important sources of information: (1) the second term in (2.6) is the information from the predictor X
and Xn+1, which denote the attributes of all the collected nodes; (2) the third term in (2.6) is the

information from the social network structure A(n+1). Both the predictor and the social network structure

play a critical role in the prediction of class labels.

As to the computational complexity in prediction, only K(d + K) logarithmic operations need to

be computed. In addition, Un+1,k and Vn+1,k are counting statistics, such that Din
n+1 =

∑K
k=1 Un+1,k

is the in-degree and Dout
n+1 =

∑K
k=1 Vn+1,k is the out-degree of the (n + 1)-th node in the network

structure A(n+1). This means in the prediction step, we only need to compute 2K counting statistics,

2K+d multiplications and 2K+d+1 summations. As a consequence, even in large scale social network,

the cost of computation is practically feasible. The classification rule of (2.6) shows that the method of

NNB is a linear classifier, which supports its practical usefulness.

2.3 Theoretical properties

We next investigate the theoretical properties of the proposed NNB model. Before the establishment of

the theorem, the following technical conditions are needed.
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(C1) There exists some positive constant ν ∈ (0,min{1/K, 1/3}), such that min16k6K{αk} > ν,

min16k6K,16j6d{µkj , 1 − µkj} > ν, min16k ̸=l6K,16j6d{|µkj − µlj |} > ν, min16k1,k26K{πk1k2} > νn−γ ,

and min16k6K{πkk −max16k ̸=l6K{πkl, πlk}} > νn−γ , where γ > 0.

It is remarked that in Condition (C1), first, all the parameters are assumed to be bounded away from

both 0 and 1. This excludes those cases where one particular category’s probability is extremely small or

extremely large for Y and X. However, the assumption on πk1k2 allows the network to be sparse. Second,

the intra-class link probability πkk is assumed to be lager than the extra-class link probability πkl (k ̸= l).

This is a straightforward assumption, because it is intuitive to assume nodes belonging to the same class

tend to have a higher probability to follow each other. Then, we have the following theorem.

Theorem 2.1. Assuming the technical conditions in (C1), for fixed K > 2, d ∝ nλ and πk1k2 ∝ n−γ

subject to (1) 0 6 γ < 1/4 or (2) 1/4 6 γ < 1/2 < λ 6 1 or (3) 1/2 6 γ < λ 6 1, we have

P (Ŷi = 1 |Yi = 1) → 1 as n → ∞.

From the above theorem, one could see that with the classification rule of NNB, one can precisely

predict the class label with probability tending to 1 as n goes to infinity. To achieve the theoretical

prediction accuracy, two constraints should be satisfied. First, when the size of the network n becomes

larger, the dimension of predictors d is assumed to become larger in an appropriate speed. This is

reasonable in real practice. For example, in the Sina Weibo platform, the self-created labels of users

may be increasingly diversified as the network size n grows, which could be used as predictors. Secondly,

the average in-degree (E
∑n

i=1 aji ∝ n1−γ) and average out-degree (E
∑n

j=1 aij ∝ n1−γ) of node i are

assumed to increase in an appropriate rate to the network size n. This means that each user gradually

makes new friends as the network size n becomes larger. It is remarked that when dimension d becomes

larger, irrelevant predictors which independent of Y could be involved. Then feature selection procedure

could help to exclude those irrelevant predictors before parameter estimation. We will illustrate this in

simulation examples. In the next section, some numerical studies will be conducted to illustrate the finite

sample performance of the NNB classification rule.

3 Numerical studies

3.1 Simulation examples

To illustrate the performance of the proposed NNB method, two competitors are included for comparison.

They are, respectively, the classical naive Bayes classifier (NB), in which the network information will not

be used; and the network classifier (NC), in which the predictor information will not be used. Analogous

to (2.6), classification rules of NB and NC could be written in a similar form as,

Ŷ NB
n+1 = argmax

16t6K

{
log α̂t +

d∑
j=1

log(1− µ̂kj) +
d∑

j=1

g(µ̂tj)Xn+1,j

}
, (3.1)

Ŷ NC
n+1 = argmax

16t6K

{
log α̂t + n

K∑
k=1

α̂k log[(1− π̂kt)(1− π̂tk)]

+
K∑

k=1

[g(π̂kt)Un+1,k + g(π̂tk)Vn+1,k]

}
, (3.2)

where the notations Un+1,k, Vn+1,k and function g(·) have been defined in the previous section.

To verify the classification ability of our proposed method, some irrelevant predictors are included.

Thus, the L0-regularization feature selection method (see [12]) specially proposed for naive Bayes model

could be adopted. The conditional independence assumption on X and A(n) given Y makes this feature

selection method also appropriate for NNB. Practically, relevant predictors are selected on the training

set, and predictions are made based on the selected ones on the testing set. In the rest of this article, the

performance of NB and NNB with selected features will be reported.
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Table 1 Detailed simulation results for balanced case (K = 2, 3) with S = 500 replications

Density RMSE AME (%)

K d n (×102) (×102) NB NC NNB

2 50 200 3.00 4.38 9.04 12.15 3.75

500 2.25 2.59 7.21 5.29 1.47

1,000 1.50 1.96 6.74 3.12 0.84

100 200 2.99 4.00 2.72 12.09 1.24

500 2.25 2.54 1.93 5.32 0.46

1,000 1.50 1.93 1.73 3.14 0.24

3 50 200 2.67 5.33 14.81 27.01 8.83

500 2.00 3.29 11.04 15.55 3.98

1,000 1.33 2.21 10.12 10.86 2.65

100 200 2.66 5.28 5.95 26.78 3.79

500 2.00 3.36 3.33 15.44 1.26

1,000 1.33 2.33 2.89 10.93 0.79

Table 2 Detailed simulation results for unbalanced case (K = 2) with S = 500 replications

Density RMSE Precision (%) Recall (%) F1 measure (%)

d n (×102) (×102) NB NC NNB NB NC NNB NB NC NNB

50 200 3.64 7.32 96.5 96.2 99.0 54.4 54.7 71.3 68.3 68.7 82.1

500 2.73 4.93 98.6 98.5 99.7 75.2 81.9 93.7 85.1 89.4 96.6

1,000 1.82 2.85 98.8 99.1 99.8 80.4 89.6 97.3 88.6 94.1 98.5

100 200 3.63 6.65 99.2 96.4 99.7 67.2 54.6 76.1 79.2 68.6 85.8

500 2.73 4.80 99.6 98.5 99.9 88.8 81.4 96.4 93.8 89.0 98.1

1,000 1.82 3.04 99.7 99.2 99.9 93.8 89.4 99.0 96.6 94.0 99.5

In the simulation study, we consider two cases of simulation examples: Case 1 with balanced classes,

and Case 2 with unbalanced classes. The data of both two cases are simulated according to (2.3), in

the following 3 steps. First, we independently generate the class labels Y1, . . . , Yn from {1, . . . ,K} with

probability P(Yi = k) = αk for 1 6 k 6 K. Second, given each Yi, the j-th binary predictor Xij is

generated from a Bernoulli distribution with probability P(Xij = 1 |Yi = k) = µkj for 1 6 k 6 K and

1 6 j 6 d. Here, we assume the first d0 (< d) predictors are relevant to class labels, and the others

are irrelevant, i.e., µkj = µ0j for 1 6 k 6 K and d0 + 1 6 j 6 d. In addition, {µkj}16k6K,16j6d0 and

{µ0j}d0+16j6d are simulated from a uniform distribution on [0.05, 0.95]. Third, entries of adjacency

matrix A(n) are independently generated from a Bernoulli distribution with probability

P(ai1i2 = 1 |Yi1 = k1, Yi2 = k2) = πk1k2

for 1 6 i1 ̸= i2 6 n, and aii = 0 for 1 6 i 6 n.

To demonstrate the finite sample performance of the proposed method, various number of classes

(K = 2, 3 for Case 1 and K = 2 for Case 2), the relevant predictor dimensions (d0 = 50, 100), and sample

sizes (n = 200, 500, 1000) are considered. Note that in all these cases, there are d = 200 predictors,

which include d0 relevant ones and d − d0 irrelevant ones. For each fixed parameter setting, a total of

S = 500 simulation replications are conducted. For each simulation replication, we adopt the leave-one-

out manner, i.e., in i-th step, use i-th node for testing and the other n−1 nodes for training. Then, we use

the notation θ̂(s,i) to represent the estimate obtained in the i-th step of the s-th simulation replication.

Next, the performance of the NNB method is measured from two aspects: (1) parameter estimation

and (2) prediction accuracy. First, as to the performance of parameter estimation, we define the root

mean squared error (RMSE), i.e.,

RMSE =

{
S−1n−1m−1

S∑
s=1

n∑
i=1

∥θ̂(s,i) − θ∥2
}1/2

,
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where m = K(1+K+ d) is the dimension of θ. Moreover, the network density is computed as Density =

(n2−n)−1
∑

i̸=j aij . Then RMSE (×102) and Density (×102) are reported in simulation results. Second,

to evaluate the prediction accuracy, we adopt different criteria in the two cases, separately. Because the

NNB approach is able to handle the problems with both K = 2 and K > 2. In Case 1, we adopt the

general measurement of classification performance, which could be applied for both K = 2 and K > 2.

While in Case 2, more detailed measurements will be adopted to illustrate the performance of NNB,

which could be typically applied for K = 2. The definitions of different criteria will be stated in the

following cases, respectively.

Case 1 (Balanced classes). In this balanced case, we consider K = 2 with class probabilities α =

(1/2, 1/2)T, and K = 3 with class probabilities α = (1/3, 1/3, 1/3)T. We then set the intra-class link

probability as πkk = 0.04I(n = 200) + 0.03I(n = 500) + 0.02I(n = 1000) for 1 6 k 6 K, and the

extra-class link probability as πkl = 0.5πkk for k ̸= l. Note that, this setting could ensure: (1) the

network density decreases as n grows; (2) the in- and out-degree of nodes increase as the network size n

increases. Next, we use the mis-classification error to evaluate the prediction accuracies of all the three

methods, which is, MEs = n−1
∑n

i=1 I(Ŷ
(s)
i ̸= Yi), where Ŷ

(s)
i is the predicted class label for node i in

the s-th replication. The average mis-classification error (AME = S−1
∑

s MEs) of NB, NC and NNB

over S = 500 replications are reported as percentage in Table 1.

From Table 1, one could draw a conclusion that the NNB method always performs the best. This is as

expected because the classification rule of NNB considers both information from the predictor and the

network structure comprehensively. Second, when both K and d are fixed, the RMSE and AME values

approach 0 quickly as n gets larger. This is because a larger sample size leads to more accurate estimates

and predictions. Third, when both n and d are fixed, a larger class number K leads to larger RMSE and

AME values, since when K gets larger, the sample sizes for each class becomes smaller and nodes have

higher probability to be classified into incorrect classes, which leads to worse estimates and predictions.

Lastly, for fixed K and n, a larger d leads to smaller RMSE and AME. This means the more relevant

features are involved, the better estimates and predictors we could obtain.

Case 2 (Unbalanced classes). In this unbalanced case, we only consider the classification problem with

K = 2. The corresponding class probabilities are set to be α = (0.1, 0.9)T, and the link probabilities πkls

are set to be the same as in the balanced case. Unlike the balanced case, the mis-classification error is

no longer a good criterion to evaluate the prediction accuracy. We adopt the frequently used evaluation

criteria for the classification of unbalanced classes (see [17]). They are precision P = tp/(tp+ fp), recall

R = tp/(tp+ fn) and F1 measure F = 2PR/(P +R), where

tp =

{ n∑
i=1

I(Yi = 1)

}−1 n∑
i=1

I(Ŷi = 1, Yi = 1)

represents the true positive rate,

fp =

{ n∑
i=1

I(Yi = 2)

}−1 n∑
i=1

I(Ŷi = 1, Yi = 2)

represents the false positive rate, and

fn =

{ n∑
i=1

I(Yi = 1)

}−1 n∑
i=1

I(Ŷi = 2, Yi = 1)

represents the false negative rate. Note that, class 1 is defined to be the positive class in this example. The

average precision, recall, and F1 measure of all the three classification methods over S = 500 replications

are reported as percentage in Table 2.

From Table 2, one could see that the NNB method also always performs the best and the performance

of RMSE is quite the same as in Table 1. Furthermore, for a fixed d, values of precision, recall and F1

measure approach 1 quickly, as n gets larger. Lastly, for fixed n, a larger d leads to larger precision, recall

and F1 measure. This corroborates the conclusion in Theorem 2.1 and shows that the NNB method is

also practically useful for unbalanced cases.
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3.2 A Sina Weibo example

In this subsection, we analyze a real example and the data are collected from Sina Weibo, which is the

largest Twitter-type social media in China. Sina Weibo allows different nodes or users to follow each

other and share information between connected ones. In addition, Sina Weibo encourages users to create

individual profiles. Each profile contains a list of self-created short labels (or keywords) for a typical

user. These labels help to identify the user’s most important characteristics. The information contained

in labels could be diversified, which includes but is not limited to, a user’s career status, life style and

interests. As one can see, if labels are carefully prepared, they could be helpful for understanding the

network structure. Since, intuitively, users with similar class labels are more likely to follow each other.

This makes the NNB model combining the network structure and label information practically useful.

In this example, we collect the data starting from the official Weibo account of the MBA program of

the Guanghua School of Management in Peking University. The number of users that follow the official

account is 47,152 by the time we collect the data. As a matter of fact, due to the constraint imposed

by Sina Weibo, only 5,000 followers could be sampled from the website. They are randomly selected by

Sina Weibo but the random mechanism is confidential which is determined by Sina Weibo. Despite of

the 446 incorrect accounts, the final sample contains n = 5,000− 446 = 4,554 users.

In this dataset, the relationships of users could be represented by an adjacency matrix A(n) = (aij),

where aij = 1 if the i-th user follows the j-th user, and aij = 0 otherwise. The network density is 0.0041,

which indicates a fairly sparse network. This dataset also contains a total of 39 self-created labels.

Specially, class labels are considered based on the labels which are the names of four famous business

schools in China. Our objective here is to discriminate whether a user is from one of these four business

schools or not, if other information is collected. Accordingly, the binary response Yi = 1 if the i-th

user carries at least one of above four labels of school names, and Yi = 2 otherwise. Besides the above

labels, other 35 self-created labels are viewed as binary predictors, i.e., the predictor Xij = 1 if the i-th

user have the j-th class label, and Xij = 0 otherwise. To sum up, there are
∑n

i I(Yi = 1) = 502 users

from class 1 (positive class), and the other 4,052 users from class 2 (negative class). Next, the class

probabilities are estimated as α̂ = (0.1102, 0.8898)T, which states that the classes are unbalanced. Then

the link probabilities are estimated as (π̂11, π̂12, π̂21, π̂22) = (0.0438, 0.0118, 0.0061, 0.0023), which show

that users in class 1 are more likely to follow each other.

To illustrate the performance of the proposed method in this real dataset, the leave-one-out manner

is adopted. For the sake of comparison, other popular classification methods, such as support vector

machine SVM (see [28]), random forest RF (see [4]), adaptive boosting AdaB (see [5]) and autologistic

AL (see [24]) are also considered. For the sake of fairness, out- and in-degrees in two classes of each node

(i.e.,
∑

j I(Yj = 1, aij = 1),
∑

j I(Yj = 2, aij = 1),
∑

j I(Yj = 1, aji = 1) and
∑

j I(Yj = 2, aji = 1)) are

treated as extra predictors for these competitors.

The L0-regularization feature selection method (see [12]) is adopted both for NB and NNB. There

are 12 predictors selected in average. The simulation results are shown in Table 3. We can find that

NNB always performs better than the other methods in both recall and F1 measure. But NNB is not

uniformly optimal, since it is worse than some competitors in precision. Therefore, we would continue to

optimize this approach in the future.

Table 3 Results for the Sina Weibo example

Evaluation criteria
Classification methods

SVM RF AdaB AL NB NC NNB

Precision (%) 75.37 93.64 93.80 91.32 81.64 83.73 83.79

Recall (%) 22.51 41.04 38.45 52.99 10.76 58.17 58.57

F1 measure (%) 34.67 57.06 54.54 67.06 19.01 68.65 68.94
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4 Concluding remarks

The novel network naive Bayes model for social network data has been proposed in this study, which

incorporates social network structure into the classical naive Bayes model. After deriving the MLE of

parameters, the computation of the classification rule is rather easy and fast, which is feasible even in

large scale social network. Statistical properties of the proposed NNB have been theoretically established.

Numerical studies have been conducted to empirically show the superior performance of the proposed

NNB method.

To conclude this article, we present four other interesting topics for future research. First, the inspira-

tion of NNB could be applied to other Bayesian classifiers, such as tree-augmented naive Bayes (see [10]),

lazy Bayesian rules (see [31]), averaged one-dependence estimators (see [27]) and weighted naive Bayes

(see [29]). Second, the assumptions on social network we considered are simple and intuitive in this

study, such as the conditional independence assumption of X and A(n) given Y. However, when the

dimension d is fairly large, the conditional independence may not be satisfied. To get more accurate

prediction, these predictors relative with the network should be identified, which is another intriguing

research topic. Third, the statistical properties of estimators when we adopt the weight parameter ω need

to be established, and the corresponding prediction rule should be linearly approximated to make it fea-

sible in the future work. Fourth, Laplacian support vector machine [2] is practically useful in classifying

the observations with adjacent relationship. It learns the adjacent relationship from X and constructs a

Laplacian matrix. While the network structure A(n) naturally defines the adjacent relationship in net-

work data, how to construct a more reasonable Laplacian matrix L and get better prediction is worth

studying in the future.
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Appendix A Detailed derivation of (2.5)

In the following derivation, the chain rule and Bayes’ rule in probability theory can be used. Then the

posterior probability can be derived as

P(Yn+1 = t |Y,X, Xn+1,A(n+1))

= {P(Y,X, Xn+1,A(n+1))}−1P(Yn+1 = t,Y,X, Xn+1,A(n+1))

= {P(Y,X, Xn+1,A(n+1))}−1αt

[ n∏
i=1

K∏
k=1

α
I(Yi=k)
k

]

×
[ n∏
i=1

d∏
j=1

K∏
k=1

{µXij

kj (1− µkj)
1−Xij}I(Yi=k)

][ d∏
j=1

µ
Xn+1,j

tj (1− µtj)
1−Xn+1,j

]

×
[ ∏
16i1 ̸=i26n

∏
16k1,k26K

{(πk1k2
)ai1i2 (1− πk1k2

)1−ai1i2 }I(Yi1=k1,Yi2=k2)

]

×
[ n∏
i=1

K∏
k=1

{(πkt)
ai,n+1(1− πkt)

1−ai,n+1(πtk)
an+1,i(1− πtk)

1−an+1,i}I(Yi=k)

]

= Cαt

[ d∏
j=1

µ
Xn+1,j

tj (1− µtj)
1−Xn+1,j

]

×
[ n∏
i=1

K∏
k=1

{(πkt)
ai,n+1(1− πkt)

1−ai,n+1(πtk)
an+1,i(1− πtk)

1−an+1,i}I(Yi=k)

]
, (A.1)
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where C is a constant independent on t, i.e.,

{P(Y,X, Xn+1,A(n+1))}−1

[ n∏
i=1

K∏
k=1

α
I(Yi=k)
k

][ n∏
i=1

d∏
j=1

K∏
k=1

{µXij

kj (1− µkj)
1−Xij}I(Yi=k)

]

×
[ ∏
16i1 ̸=i26n

∏
16k1,k26K

{(πk1k2)
ai1i2 (1− πk1k2)

1−ai1i2}I(Yi1=k1,Yi2=k2)

]
.

Appendix B A technical lemma

Lemma B.1. Assume (C1), for any 1 6 k1, k2 6 K and γ > 0, we have |π̂k1k2 − πk1k2 | = OP(n
−1/2).

Given Yn+1 = 1, for any 1 6 k 6 K, we have |π̃k1 − πk1| = OP(n
−1/2) and |π̃1k − π1k| = OP(n

−1/2),

where

π̃k1 =

{ n∑
i=1

I(Yi = k)

}−1 n∑
i=1

ai,n+1I(Yi = k)

and

π̃1k =

{ n∑
i=1

I(Yi = k)

}−1 n∑
i=1

an+1,iI(Yi = k).

Proof. We first derive the order of |π̂k1k2
− πk1k2

|. Here, we only consider the case of k1 ̸= k2 in this

proof. Then one can prove the case of k1 = k2 in a similar way. For fixed k1 and k2 subject to k1 ̸= k2,

we define Zi1i2 = ai1i2I(Yi1 = k1, Yi2 = k2) and Wi1i2 = I(Yi1 = k1, Yi2 = k2) for convince. Thus we can

write π̂k1k2 = W̄−1Z̄, where

Z̄ = n−1(n− 1)−1
∑
i1 ̸=i2

Zi1i2

and

W̄ = n−1(n− 1)−1
∑
i1 ̸=i2

Wi1i2 .

Then we have EZ̄ = αk1αk2πk1k2 and

var(Z̄) = n−2(n− 1)−2
∑
i̸=j

∑
k ̸=l

cov(Zij , Zkl).

The variance contains four cases of terms as follows:

Case 1. For i ̸= j ̸= k ̸= l, cov(Zij , Zkl) = E(ZijZkl)− EZijEZkl = 0.

Case 2. For i ̸= j, k ̸= l, i = k and j ̸= l, cov(Zij , Zkl) = π2
k1k2

αk1(1− αk1)α
2
k2
.

Case 3. For i ̸= j, k ̸= l, i ̸= k and j = l, cov(Zij , Zkl) = π2
k1k2

α2
k1
αk2

(1− αk2
).

Case 4. For i ̸= j, k ̸= l, i = k and j = l, cov(Zij , Zkl) = πk1k2αk1αk2 − π2
k1k2

α2
k1
α2
k2
.

We can find that, for Cases 2 and 3, there are a total of n(n− 1)(n− 2) terms in var(Z̄). For Case 4,

there are a total of n(n−1) terms in var(Z̄). Then we have var(Z̄) = n−1(n−1)−1(n−2)π2
k1k2

αk1αk2(αk1

+αk2 − 2αk1αk2)+n−1(n− 1)−1πk1k2αk1αk2(1−πk1k2αk1αk2). By the assumption πk1k2 ∝ n−γ , we have

var(Z̄) = O(n−min{2γ+1,2+γ}). Consequently,

|Z̄ − αk1αk2πk1k2 | = OP(n
−min{γ+1/2,1+γ/2}).

Similarly, we have EW̄ = αk1αk2 and var(W̄ ) = n−1(n − 1)−1(n − 2)αk1αk2(αk1 + αk2 − 2αk1αk2)

+ n−1(n− 1)−1αk1αk2(1− αk1αk2) = O(n−1). Then we have |W̄ − EW̄ | = OP(n
−1/2). Therefore, for k1

̸= k2, it is not hard to verify that |π̂k1k2−πk1k2 | = |W̄−1Z̄−πk1k2 | = OP(max{n−min{γ+1/2,1+γ/2}, n−1/2})
= OP(n

−min{γ+1/2,1+γ/2,1/2}) = OP(n
−1/2) when γ > 0. We can also have |π̂kk − πkk| = OP(n

−1/2) for

any 1 6 k 6 K in the same way, but proof details are omitted. Thus, for any 1 6 k1, k2 6 K,

|π̂k1k2 − πk1k2 | = OP(n
−1/2).
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Next, for a fixed k, analogous to the above discussion, we consider the order of |π̃k1 − πk1| when
given Yn+1 = 1. Define Z∗

i = ai,n+1I(Yi = k) and W ∗
i = I(Yi = k). Then π̃01 = (W̄ ∗)−1Z̄∗, where

Z̄∗ = n−1
∑n

i=1 Z
∗
i and W̄ ∗ = n−1

∑n
i=1 W

∗
i . Then we have E(Z̄∗ |Yn+1 = 1) = πk1αk, var(Z̄

∗ |Yn+1

= 1) = n−1(πk1αk − π2
k1α

2
k) = O(n−γ−1) when γ > 0. Hence, given Yn+1 = 1, |Z̄∗ − E(Z̄∗|Yn+1 = 1)|

= OP(n
−1/2−γ/2).

Similarly, we have E(W̄ ∗ |Yn+1 = k) = αk, var(W̄
∗ |Yn+1 = k) = n−1(αk − α2

k) = O(n−1). Then,

given Yn+1 = 1, we have |W̄ ∗ − E(W̄ ∗ |Yn+1 = k)| = OP(n
−1/2). Therefore, given Yn+1 = 1, |π̃k1 − πk1|

= |(W̄ ∗)−1Z̄∗ − πk1| = OP(n
−min{1/2+γ/2,1/2}) = OP(n

−1/2) when γ > 0. In the same way, given

Yn+1 = 1, we can also prove that |π̃1k − π1k| = OP(n
−1/2), because their mathematical expressions are

similar.

Appendix C Proof of Theorem 2.1

Let Qt = P̂(Yn+1 = t |Y,X, Xn+1,A(n+1)). Then we have

P(Ŷn+1 = 1 |Yn+1 = 1) = P

( ∩
t>2

(Q1 > Qt)

∣∣∣∣Yn+1 = 1

)
> 1−

∑
t>2

P(Qt > Q1 |Yn+1 = 1).

Thus, in order to prove P(Ŷn+1 = 1 |Yn+1 = 1) → 1 as n → ∞, we only need to prove P(Q1 − Qt

> 0 |Yn+1 = 1) → 1 as n → ∞, for any t > 2. To this end, after some simple mathematical derivations,

we can write Q1 −Qt = F1 + F2 + F3 + F4, where F1 = log(α̂−1
t α̂1) and

F2 =

d∑
j=1

{
Xn+1,j log

µ̂1j

µ̂tj
+ (1−Xn+1,j) log

1− µ̂1j

1− µ̂tj

}
,

F3 = n
K∑

k=1

α̂k

{
π̃k1 log

π̂k1

π̂kt
+ (1− π̃k1) log

1− π̂k1

1− π̂kt

}
,

F4 = n
K∑

k=1

α̂k

{
π̃1k log

π̂1k

π̂tk
+ (1− π̃1k) log

1− π̂1k

1− π̂tk

}
.

In what follows the above four terms will be carefully evaluated separately.

Step 1. Firstly, we need to prove that F1 is bounded with probability one, as given Yn+1 = 1. By

Condition (C1), we immediately know that | log(α−1
t α1)| < − log ν. Then by |α̂k − αk| = OP(n

−1/2), we

have

| log α̂k − logαk| = | log{1 + α−1
k (α̂k − αk)}| = OP(n

−1/2),

for 1 6 k 6 K. Thus, we can immediately obtain that

|F1| 6 | log(α−1
t α1)|+ | log(α̂−1

t α̂1)− log(α−1
t α1)|

6 − log ν +
∣∣ log α̂1 − logα1

∣∣+ ∣∣ log α̂t − logαt

∣∣ = OP(n
−1/2).

Step 2. We next prove F2 tends to infinity with probability one, as given Yn+1 = 1. By Taylor’s

expansion with Lagrange remainder term at point (µ1j , µtj), there exist a number µ̃1j between µ̂1j and

µ1j , and a number µ̃tj between µ̂tj and µtj , such that F2 = F21 + F22, where

F21 =
d∑

j=1

{
Xn+1,j log

µ1j

µtj
+ (1−Xn+1,j) log

1− µ1j

1− µtj

}
,

F22 =
d∑

j=1

{
Xn+1,j − µ̃1j

µ̃1j(1− µ̃1j)
(µ̂1j − µ1j)−

Xn+1,j − µ̃tj

µ̃tj(1− µ̃tj)
(µ̂tj − µtj)

}
.

These two terms will be considered separately. For convenience, we denote

Tn+1,j = Xn+1,j log(µ
−1
tj µ1j) + (1−Xn+1,j) log{(1− µtj)

−1(1− µ1j)}.
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Then by [12, Lemma 3] and E(Xn+1,j |Yn+1 = 1) = µ1j , we immediately know that

E(Tn+1,j |Yn+1 = 1) := ηj = µ1j log
µ1j

µtj
+ (1− µ1j) log

1− µ1j

1− µtj
> ν log

1 + ν

1− ν
, (C.1)

|Tn+1,j − ηj | =
∣∣∣∣(Xn+1,j − µ1j) log

µ1j(1− µtj)

µtj(1− µ1j)

∣∣∣∣ 6 2 log
1− ν

ν
. (C.2)

Furthermore, by var(Xn+1,j |Yn+1 = 1) = µ1j(1− µ1j), we have

1

d

d∑
j=1

var(Tn+1,j − ηj |Yn+1 = 1) =
1

d

d∑
j=1

µ1j(1− µ1j)

[
log

µ1j(1− µtj)

µtj(1− µ1j)

]2
6

(
log

1− ν

ν

)2

. (C.3)

For convenience, we denote ξ = 0.5ν log{(1−ν)−1(1+ν)} and κ = log{ν−1(1−ν)}. Based on (C.1)–(C.3),

we have

P(F21 > dξ |Yn+1 = 1) > P

(
F21 >

d∑
j=1

ηj − dξ

∣∣∣∣Yn+1 = 1

)

= P

(
1

d

d∑
j=1

(Tn+1,j − ηj) > −ξ

∣∣∣∣Yn+1 = 1

)
> 1− exp

(
− dξ2

2κ2 + 4κξ/3

)
,

where the last sign of inequality is obtained by Bernstein’s inequality. It shows that P(d−1F21 > ξ |Yn+1

= 1) → 1, as d → +∞.

We next consider the term F22. By Condition (C1), |µ̂kj − µkj | = OP

(
n−1/2

)
and |µ̃kj − µkj |

6 |µ̂kj − µkj |, we have

|µ̃kj(1− µ̃kj)|−1 6 {µkj(1− µkj)− |µ̃kj(1− µ̃kj)− µkj(1− µkj)|}−1

6 {µkj(1− µkj)− |µ̃kj − µkj |(|1− 2µkj |+ |µ̃kj − µkj |)}−1

6 {ν(1− ν)− 2|µ̂kj − µkj |}−1 = OP(1).

Together with |Xn+1,j − µ̃1j | 6 1, we have |F22| = OP(dn
−1/2) = oP(d), as given Yn+1 = 1. Hence, we

can obtain that P(d−1F2 > ξ/2 |Yn+1 = 1) → 1, as d → +∞. As a result, F2 tends to infinity at the

speed of d (∝ nλ).

Step 3. We then consider F3 in this step. Write F3 = F ∗
3 + (F3 − F ∗

3 ), where

F ∗
3 = n

K∑
k=1

αk[πk1 log(π
−1
kt πk1) + (1− πk1) log{(1− πkt)

−1(1− πk1)}].

Based on Condition (C1) and [12, Lemma 3], we immediately know that

F ∗
3 > νn1−γ log{(1− νn−γ)−1(1 + νn−γ)} = νn1−γ log{1 + 2νn−γ(1− νn−γ)−1} ≈ 2ν2n1−2γ .

As a result, F ∗
3 tends to infinity at the speed of n1−2γ when γ < 1/2.

Next, we can see that |F3 − F ∗
3 | can be bounded by

n
K∑

k=1

{|α̂kπ̃k1 log π̂k1 − αkπk1 log πk1|+ |α̂kπ̃k1 log π̂kt − αkπk1 log πkt|

+ |α̂k log(1− π̂k1)− αk log(1− πk1)|+ |α̂kπ̃k1 log(1− π̂k1)− αkπk1 log(1− πk1)|
+ |α̂k log(1− π̂kt)− αk log(1− πkt)|+ |α̂kπ̃k1 log(1− π̂kt)− αkπk1 log(1− πkt)|}.

In order to compute the upper bound of |F3 −F ∗
3 |, the following results are needed. Under the condition

πkt ∝ n−γ and |π̂kt − πkt| = OP

(
n−1/2

)
by Lemma B.1, we have | log(1− πkt)| = O(n−γ) and

| log π̂kt − log πkt| = | log{1 + π−1
kt (π̂kt − πkt)}| = OP(n

γ−1/2),
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| log(1− π̂kt)− log(1− πkt)| = | log{1− (1− πkt)
−1(π̂kt − πkt)}| = OP(n

−1/2).

We also have |α̂k − αk| = OP (n
−1/2) and |π̃k1 − πk1| = OP (n

−1/2) by Lemma B.1. Based on the above

equations, we have |F3 − F ∗
3 | = OP (n

max{γ,1/2−γ,(log logn)/ logn+1/2}). Similarly, the order of F4 is the

same as F3, which can be discussed in the same way.

Consequently, by the condition of Theorem 2.1, (1) 0 6 γ < 1/4 or (2) 1/4 6 γ < 1/2 < λ 6 1 or (3)

1/2 6 γ < λ 6 1, we have

max{λ, 1− 2γ} > max{γ, 1/2− γ, (log log n)/ log n+ 1/2},

as n → +∞. Hence, the speed of F2 or F ∗
3 can dominate the speed of |F3−F ∗

3 |, which implies P(Q1−Qt

> 0 |Yn+1 = 1) → 1 as n → ∞. Thus, the conclusion of Theorem 2.1 is obtained and the proof is

completed.
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