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Abstract One of the key research problems in financial markets is the investigation of inter-stock dependence.

A good understanding in this regard is crucial for portfolio optimization. To this end, various econometric models

have been proposed. Most of them assume that the random noise associated with each subject is independent.

However, dependence might still exist within this random noise. Ignoring this valuable information might lead to

biased estimations and inaccurate predictions. In this article, we study a spatial autoregressive moving average

model with exogenous covariates. Spatial dependence from both response and random noise is considered

simultaneously. A quasi-maximum likelihood estimator is developed, and the estimated parameters are shown

to be consistent and asymptotically normal. We then conduct an extensive analysis of the proposed method by

applying it to the Chinese stock market data.
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1 Introduction

The stock market is often regarded as the barometer of a country’s economic development. This is

especially true in the Chinese stock market. The Chinese stock market is a big market with great

potential and broad development prospects. After more than twenty years of development, the Chinese

stock market reached a scale that took many other countries decades or even hundreds of years to achieve

[13,23]. The China Securities Depository and Clearing Corporation Limited reported that by 2020, there

were 2,423 companies listed on the Shenzhen Stock Exchange with a market value of 35.2 trillion yuan,

and 1,800 companies listed on the Shanghai Stock Exchange with a market value of 45.5 trillion yuan.

Additionally, the total circulation market value of the Shanghai and Shenzhen Stock Exchange reached

64.81 trillion yuan that same year. The Chinese stock market plays an important role in enterprise
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financing, improvement of the financing structure, optimal allocation of social resources, and promoting

social and economic growth.

For financial markets, a key research problem is investigating inter-stock dependence. A good

understanding of this dependence is crucial for portfolio optimization [25]. To this end, various

econometric models have been proposed. For example, Sharpe [28] developed the popularly used capital

asset pricing model (CAPM). This model quantified the return of a single stock or stock portfolio by the

risk-free return, risk correction coefficient β and equity market premium. As an extension of the CAPM,

Fama and French [11] developed the famous three-factor model. They found that the market value, book-

to-market ratio and price-to-earnings ratio were also important factors in explaining comovement in the

returns of different stocks. These groundbreaking theories have inspired many follow-up studies trying

to explain inter-stock dependence from various perspectives. For example, Chan et al. [4] found that

the cash flow, stock size and book-to-market ratio can help explain stock returns synchronicity. They

also demonstrated that the same industry effect was one of the sources of inter-stock dependence [5].

Other factors such as the leverage, size, monetary policy and information sharing are also important in

explaining covariation in stock returns [10,16,18,27].

It is remarkable that none of the aforementioned models have studied inter-stock dependence from the

perspective of the shareholder network. A shareholder network refers to a network in which each node

represents a stock and each edge represents a major common shareholder relationship between the two

stocks. An accurate definition of a common shareholder is provided in the next paragraph. We argue

that this is an important relationship that might be partially responsible for inter-stock dependence.

In fact, various spatial autoregressive models have been successfully used to capture such a dependence

effect [33, 35, 36]. Despite the usefulness of those pioneering studies, all the models suffer one common

limitation. They all assume that the random noise associated with different stocks is independent. This

assumption implies that the dependence structure observed in the responses can be fully captured by

two components: the spatial autoregressive component and the regression component associated with

exogenous covariates. Unfortunately, in reality, this assumption could be questionable. In fact, much

empirical evidence suggests that nontrivial dependence might still exist in random noises. Ignoring this

crucial insight might lead to biased estimations and thus inaccurate predictions.

To fix the problem, we propose a spatial autoregressive moving average (SARMA) model [1, 8, 14, 15].

It accounts for the shareholder network effect of multiple stocks. This model could be viewed as a

natural extension of the spatial autoregressive model but with an additional spatial moving average

(SMA) component. By including the SMA component, the previously ignored dependence in the random

noise can be captured and investigated. To this end, we identify the top five or top ten shareholders

for each stock. Two stocks are said to have a common shareholder relationship if there is some overlap

in the top shareholders between the two stocks. Thereafter, an adjacency matrix A = (aij) ∈ RN×N

can be constructed to describe the common shareholder network. Specifically, for any two arbitrary

stocks i and j, aij = 1 if they share at least one common shareholder; otherwise aij = 0. As a result,

we can use the adjacency matrix A to capture the shareholder effect of different stocks. To estimate

the parameters of the SARMA model, we employ a quasi-maximum likelihood estimation method. By

temporarily assuming that the error term follows an independent Gaussian distribution, a quasi-log-

likelihood function can be established. Its first- and second-order derivatives can then be analytically

calculated. A standard Newton-Raphson type computational algorithm is then used to optimize the quasi-

log-likelihood function. This leads to the quasi-maximum likelihood estimator (QMLE). Theoretically,

we can prove that the QMLE is consistent and asymptotically normal under appropriate conditions, even

if the random noise is not Gaussian at all. To demonstrate its practical use, we apply the proposed

method to the Chinese stock market data and extensively analyze the results.

The rest of this article is organized as follows. Section 2 introduces the stock market data and network

dependence, which includes the description of the data, descriptive analysis, explanation of the SARMA

approach, statistical analysis and real data results. Section 3 discusses the asymptotic theory, which

contains the description of the QMLE. In this section, the statistical hypotheses are also tested, and the

results of the simulation and hypothesis testing are provided. A short discussion and some concluding
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remarks are presented in Section 4. All the technical details are relegated to the appendix.

2 Stock market data and network dependence

2.1 Data description

We present here a case study on the shareholder network effect in the Chinese stock market, where

the data were collected from the China Stock Market and Accounting Research (CSMAR) Database.

Specifically, a total of 509 stocks in the Shanghai A stock market, 591 stocks in the Shenzhen A stock

market and 184 stocks in the growth enterprise market (GEM) were analyzed. For each stock market,

the response variable Yi for 1 6 i 6 N is the excessive return (in percentage) of each stock. Here, the

excessive return is defined as the daily stock return subtracted by the return of the market (e.g., as

represented by the corresponding market composite index). In empirical finance, some practical evidence

reveals that stocks from different industries may exhibit different performances [4]. This inspires us to

collect a covariate of

Xi = (Xi1, Xi2, . . . , Xip) ∈ Rp

for each Yi, where Xik = 1 if stock i belongs to the k-th industry, and Xik = 0 otherwise. In this proposed

example, we consider p = 10 different industries. They are, respectively, agriculture, construction, culture

and sports, electricity, finance, information, manufacturing, mining, real estate and wholesale and retail.

Furthermore, to investigate the inter-stock dependence, we use the adjacency matrix A described in

Section 1.

2.2 Descriptive analysis

To provide a quick understanding of the three markets, various network statistics are computed. We

start by calculating the in-degree and out-degree distributions. For illustration purposes, we take the

Shanghai A stock market as an example. The results are shown in Figures 1–2.
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Figure 1 (Color online) Shanghai A stock market: inter-stock dependence constructed using the top five shareholders.

(a) Visualization of the network structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree

distribution
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Figure 2 (Color online) Shanghai A stock market: inter-stock dependence constructed using the top ten shareholders.

(a) Visualization of the network structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree

distribution
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The figures illustrate how the network structure can differ when different common shareholder

information is used in the construction (e.g., top five or top ten). There are two small dense networks

in Figure 1, while there is only one small network in Figure 2. We further investigate the dense clusters

in Figure 1 and find that most of the nodes are large state-owned enterprises, such as the Industrial and

Commercial Bank of China, Agricultural Bank of China, Bank of China and Sinopec. These enterprises,

respectively, account for 6.25%, 4.84%, 3.39% and 2.7% of the total market value. Another interesting

finding is that the degrees of those companies are very large. This suggests that they are correlated

with each other in terms of common shareholder information. This, to some extent, validates our

conjecture regarding inter-stock dependence. In addition to this, there also exists an industry effect among

different stocks. To further investigate the industry effect, we visualize the results of three representative

industries—manufacturing, mining and real estate—in Figures 3–5. To better display their patterns, the

vertical coordinates of the in-degree and out-degree distributions are marked with logarithms. Clearly,

the network structures of the three industries differ from one another. For example, the network structure

of the manufacturing industry is denser than the other two industries.
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Figure 3 (Color online) Manufacturing: inter-stock dependence constructed using the top five shareholders. (a)

Visualization of the network structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree

distribution
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Figure 4 (Color online) Mining: inter-stock dependence constructed using the top five shareholders. (a) Visualization of

the network structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree distribution
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Figure 5 (Color online) Real estate: inter-stock dependence constructed using the top five shareholders. (a) Visualization

of the network structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree distribution
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2.3 The SARMA approach

To model the shareholder network effect of different stocks, we adopt the SARMA approach. It should

be noted that in terms of the use of the SARMA model, there is a fundamental difference between spatial

data and network data in the construction of adjacency matrices. For spatial data, the adjacency matrix

is usually constructed by using spatial relationships (e.g., spatially close or neighboring). However, for

network data, the adjacency matrix is constructed based on network relationships. Once the adjacency

matrix is constructed, it seems that little difference exists between the two types of data. In this particular

case, suppose that we have a large common shareholder network with N stocks. Its structure is then

captured by the adjacency matrix A described in Section 1. Furthermore, we define aii = 0 and
∑N

i=1 aij
> 0 for completeness.

For each stock i, we observe an excessive return Yi and a p-dimensional exogenous covariate (i.e., the

industry) Xi = (Xi1, Xi2, . . . , Xip)
T ∈ Rp. To model the inter-stock relationship between Yi’s via the

shareholder network, we adopt the SARMA model with X-variables (SARMAX) as follows [1]:

Y = ρWY+ Xβ + γWE + E , (2.1)

where Y = (Y1, . . . , YN )T ∈ RN is the response vector of excessive returns, X = (X1, . . . , XN )T ∈ RN×p

is the design matrix of the industry related covariates, W = (wij) ∈ RN×N is a row normalized adjacency

matrix with wij = aij/
∑N

j=1 aij , ρ and γ are the shareholder network effect coefficients, and β is a

p × 1 vector of the regression coefficients. Additionally, E = (ε1, . . . , εN )T ∈ RN is the random noise

vector, which is assumed to follow a multivariate distribution with a mean of 0 and a covariance matrix

of σ2I ∈ RN×N . Here, I stands for an identity matrix with compatible dimensions. It should be noted

that the disturbance process in the model (2.1) is a special case of the proposed model in [2]. According

to the model (2.1), we know that

Y = (I − ρW )−1{Xβ + (I + γW )E}.

Accordingly, we have E(Y | X) = (I − ρW )−1Xβ and

cov(Y | X) = Σ = σ2(I − ρW )−1(I + γW )(I + γWT)(I − ρWT)−1.

We assume that |ρ| < 1 and |γ| < 1 throughout the entire article since I − ρW and I + γW are invertible

as long as |ρ| < 1 and |γ| < 1, as noticed by [21]. We next consider the problem of the parameter

estimation and hypothesis testing.

2.4 Statistical analysis

To estimate the shareholder network effect involved in the model (2.1), a quasi-maximum likelihood

estimation method is provided. Note that E(Y | X) = (I − ρW )−1Xβ and

cov(Y | X) = Σ = σ2(I − ρW )−1(I + γW )(I + γWT)(I − ρWT)−1,

and the normal log-likelihood function of the model (2.1) is

ℓ(θ) = −N

2
log(2π)− N

2
log(σ2)− log |I + γW |+ log |I − ρW |

− 1

2σ2
{(I − ρW )Y− Xβ}T(I + γWT)−1(I + γW )−1{(I − ρW )Y− Xβ},

where θ = (ρ, γ, βT, σ2)T ∈ Rp+3. We define K(ρ) = I − ρW , S(γ) = I + γW and G(ρ, β) = (I − ρW )Y
− Xβ. Accordingly, the above log-likelihood can be rewritten as (omitting some constants)

ℓ(θ) = −N

2
log(σ2)− log |K(ρ)|+ log |S(γ)| − 1

2σ2
G(ρ, β)T(S(γ)T)−1S(γ)−1G(ρ, β). (2.2)
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Subsequently, the QMLE θ̂ can be obtained as θ̂ = argmaxθ ℓ(θ). For ease of notation, we use K, S

and G to represent K(ρ), S(γ) and G(ρ, β), respectively, throughout the entire article. To ensure a good

statistical inference, we further consider the problem of the hypothesis testing.

For the hypothesis testing, we propose three interesting tests, including the testing for global

significance, the testing for the shareholder network effect and the testing for the industry effect. First,

we write θ̃ = (ρ, γ, βT)T; thus, the test for global significance is

H0 : θ̃ = 0 vs. H1 : θ̃ ̸= 0. (2.3)

A quasi-likelihood ratio test is proposed to compare the associated likelihood with and without constraint

θ̃ = 0. When there are no constraints, the QMLE is θ̂ = (ρ̂, γ̂, β̂T, σ̂2)T. On the contrary, under the null

hypothesis of θ̃ = 0, we can obtain a constrained QMLE of θ̂g = argmaxθ:θ̃=0 ℓ(θ). The quasi-likelihood

ratio test statistic is then defined as Tg = 2{ℓ(θ̂)− ℓ(θ̂g)}. We next test for the shareholder network effect

using the following hypothesis test:

H0 : ρ = γ = 0 vs. H1 : ρ ̸= 0 or γ ̸= 0. (2.4)

Similarly, let θ̂s = argmaxθ:ρ=γ=0 ℓ(θ) be the QMLE obtained under constraint ρ = γ = 0. The likelihood

ratio test statistic is then defined as Ts = 2{ℓ(θ̂) − ℓ(θ̂s)}. Lastly, we consider the test for the industry

effect. The interested statistical hypothesis test is given as follows:

H0 : β = 0 vs. H1 : β ̸= 0. (2.5)

Let θ̂β = argmaxθ:β=0 ℓ(θ) be the QMLE obtained under constraint β = 0. The quasi-likelihood ratio

test statistic can then be defined as Tβ = 2{ℓ(θ̂) − ℓ(θ̂β)}. Having developed elegant estimation and

hypothesis testing methods, we next provide a thorough empirical analysis of the Chinese stock market

data.

2.5 Stock market data analysis results

In this subsection, we employ the proposed SARMA model to analyze the stock market data introduced

in Subsection 2.1. The estimated results of ρ, γ and σ2 are given in Table 1, and the results of β

are displayed by using barplots in Figures 6–8. In Table 1, network 1 stands for the adjacency matrix

constructed using information on the top five common shareholders, while network 2 stands for the

adjacency matrix constructed using information from the top ten common shareholders. From Table 1,

we can see that all the estimators are statistically significant at the 1% or 5% level. Taking the Shanghai

A stock market in network 1 as an example, the estimated ρ = 0.2127 (p < 0.001) suggests that the

return of a stock is positively related with the performance of its connected neighbors. We can find that

if two stocks have a common shareholder, their stock returns will be highly correlated. The estimated

γ = −0.2352 (p < 0.05) confirms that the return of a stock is negatively related with the error from

its connected neighbors. Finally, from Figures 6–8, we can see that the estimated β’s are very different

in the three markets. For example, the coefficients of some industries, such as finance, information and

manufacturing are significantly large in the Shenzhen A stock market, but not significant in other markets

(e.g., GEM). This suggests an industry effect among the returns of different stocks.

Furthermore, to test the goodness-of-fit of the SARMA model, we propose here an interesting graphical

strategy called a residual-residual (RR) plot. The key assumption of the SARMA model is that the

observed spatial dependence in Y can be fully explained by the SARMA model structure. If this

assumption is indeed correct, we should expect εi’s to be mutually independent, regardless of whether they

are connected. Inspired by this idea, we randomly pick one stock i and one of its connected neighbors j.

We then use estimated residual ε̂i as the X-coordinate and estimated ε̂j as the Y -coordinate. By doing

so, a total of 100 paired residuals (ε̂i, ε̂j) are plotted in Figure 9. From the figure, we can see a random

pattern of scatter points. This indicates that the SARMA model provides a good fit to the data.
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Table 1 Estimation result for the stock market data

Network 1 Network 2

Market Parameter Estimate p-value Estimate p-value

ρ 0.2127 <0.0010 0.3034 <0.0010

Shanghai γ −0.2352 0.0141 −0.3075 0.0015

σ2 0.0004 <0.0010 0.0004 <0.0010

ρ 0.7086 <0.0010 0.6908 0.0013

Shenzhen γ −0.6579 0.0004 −0.7312 0.0010

σ2 0.0003 <0.0010 0.0002 <0.0010

ρ 0.6467 0.0031 0.8056 0.0037

GEM γ −0.8485 <0.0010 −0.7951 0.0082

σ2 0.0004 <0.0010 0.0005 <0.0010
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Figure 6 (Color online) The estimation results of β in the Shanghai A stock market for network 1 (a) and network 2 (b)
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Figure 7 (Color online) The estimation results of β in the Shenzhen A stock market for network 1 (a) and network 2 (b)
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Figure 8 (Color online) The estimation results of β in the GEM for network 1 (a) and network 2 (b)
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Figure 9 The RR plot

3 The asymptotic theory

3.1 The quasi-maximum likelihood estimator

To corroborate the empirical findings obtained in the previous section, we present here a relatively

complicated asymptotic theory. We start by introducing a set of regularity conditions. Before stating

the conditions, we first define that ∆N (θ) = −N−1E{∂2ℓ(θ)/∂θ∂θT}. Here,

∆N (θ) = [∆N,11,∆N,12,∆
T
N,13,∆N,14;∆N,21,∆N,22,∆

T
N,23,∆N,24;∆N,31,∆N,32,∆N,33,∆N,34;

∆N,41,∆N,42,∆
T
N,43,∆N,44] ∈ R(p+3)×(p+3)

with

∆N,11 = N−1tr(WK−1K−1W ) +N−1tr{WT(KT)−1K−1W}
+N−1σ−2tr{(Xβ)T(KT)−1WT(ST)−1S−1WK−1Xβ},

∆N,22 = N−1tr(WS−1S−1W ) +N−1tr{WT(ST)−1S−1W},
∆N,33 = σ−2N−1XT(ST)−1S−1X, ∆N,44 = 2−1σ−4,

∆N,12 = ∆N,21 = N−1tr(WK−1S−1W ) +N−1tr{WT(KT)−1S−1W},
∆N,13 = ∆N,31 = σ−2N−1XT(ST)−1S−1WK−1Xβ,
∆N,14 = ∆N,41 = σ−2N−1tr(K−1W ), ∆N,23 = ∆N,32 = 0p,

∆N,24 = ∆N,42 = σ−2N−1tr(S−1W ), ∆N,34 = ∆N,43 = 0p.

We then define the matrix

JN (θ, µ(3), µ(4)) = [JN,11,JN,12,J T
N,13,JN,14;JN,21,JN,22,J T

N,23,JN,24;JN,31,JN,32,JN,33,JN,34;

JN,41,JN,42,J T
N,43,JN,44] ∈ R(p+3)×(p+3),

and we have

JN,11 = 2σ−4N−1tr{(S−1WK−1XβlTN ) ◦ (WK−1)}µ(3)

+ σ−4N−1tr{(K−1W ) ◦ (K−1W )}(µ(4) − 3σ4),

JN,22 = σ−4N−1tr{(S−1W ) ◦ (S−1W )}(µ(4) − 3σ4),

JN,33 = 0, JN,44 = 4−1σ−8N−1(µ(4) − 3σ4),

JN,12 = JN,21 = σ−4N−1tr{(S−1WK−1XβlTN ) ◦ (S−1W )−1}µ(3)

+ σ−4N−1tr{(K−1W ) ◦ (S−1W )}(µ(4) − 3σ4),

JN,13 = JN,31 = σ−4N−1XT(ST)−1WK−1µ(3),

JN,23 = JN,32 = σ−4N−1tr{(S−1W ) ◦ (S−1XlTN )}µ(3),

JN,14 = JN,41 = 2−1σ−4N−1XβK−1WS−1lNµ(3) + 2−1σ−6N−1tr(K−1W )(µ(4) − 3σ4),
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JN,24 = JN,42 = 2−1σ−6N−1tr(S−1W )(µ(4) − 3σ4),

JN,34 = JN,43 = σ−6N−1lNS−1Xµ(3),

where ◦ is the Hadamard product of matrices, µ(3) = E(ε3i ), µ
(4) = E(ε4i ) and lN = (1, . . . , 1)T ∈ RN .

For the ease of notation, we use ∆N and JN to represent ∆N (θ) and JN (θ, µ(3), µ(4)), respectively, in

the rest of this article. We next assume the following conditions.

(C1) (Random error) Assume that εi’s are independent and identically distributed random variables

with a mean of 0 and a variance of σ2. Furthermore, assume E|εi|4+λ < ∞ for some positive constant

λ > 0.

(C2) (Weight matrix) Assume that K is nonsingular and there exists a finite positive constant C

such that ∥K−1∥∞ + ∥W∥∞ < C for all sufficiently large N , where ∥V ∥∞ is defined as ∥V ∥∞ =

max16i6N

∑N
j=1 |vij | for any generic matrix V = (vij) ∈ RN×N .

(C3) (Law of large numbers) Assume that the elements of X are uniformly bounded constants for all N .

In addition, there exists a positive definite matrix Σ ∈ Rp×p such that XTX/N →p Σ.

(C4) (Hessian matrix) Assume that there exist a positive definite matrix ∆ ∈ R(p+3)×(p+3) and J ∈
R(p+3)×(p+3) such that ∆N →p ∆ and JN →p J as N → ∞.

These conditions are all mild and commonly used in the literature. Condition (C1) is a moment

condition, which is much weaker than commonly used distribution assumptions (see, for example, the

normal assumption in [24,31]). Conditions (C2) and (C3) are standard regularity conditions used in the

spatial literature [21, 30]. Condition (C4) is a law of the large number-type assumption, and it is used

to show the asymptotic normality of the QMLE. A similar condition can be found in [17]. Based on the

above conditions, we then have the following theorem.

Theorem 3.1. Under Conditions (C1)–(C4), there exists a local optimizer θ̂ such that ∥θ̂ − θ∥
= Op(N

−1/2). Furthermore, assume N → ∞. Then we have
√
N(θ̂ − θ) →d N(0,∆−1 + ∆−1J∆−1),

where ∆ and J are defined in Condition (C4).

By Theorem 3.1, the consistency and asymptotic normality of θ̂ are established by using proper

conditions, and the proof of this theorem is given in Appendix B. For an asymptotically valid

statistical inference, ∆−1 + ∆−1J∆−1 needs to be estimated, which can be consistently estimated by

∆−1
N (θ̂) + ∆−1

N (θ̂)JN (θ̂, µ̂(3), µ̂(4))∆−1
N (θ̂), where µ̂(s) = N−1

∑N
i=1 ε̂

s
i for s = 3, 4 and

(ε̂1, . . . , ε̂N )T = ε(ρ̂, γ̂, β̂) = S−1(γ̂)G(ρ̂, β̂).

3.2 Testing statistical hypotheses

To demonstrate the effectiveness of the three proposed quasi-likelihood ratio tests, we investigate their

asymptotic properties. First, we provide the theoretical properties under the null distributions given in

Subsection 2.4.

Theorem 3.2. Under Conditions (C1)–(C4), we consider the null hypotheses of Hg
0 : θ̃ = 0, Hs

0 : ρ

= γ = 0 and Hb
0 : β = 0, respectively. Their quasi-likelihood ratio test statistics satisfy

Tg →d

p+3∑
i=1

λi,g(θ, µ
(3), µ(4))χ2

i,1, Ts →d

p+3∑
i=1

λi,s(θ, µ
(3), µ(4))χ2

i,1, Tb →d

p+3∑
i=1

λi,b(θ, µ
(3), µ(4))χ2

i,1

as N → ∞, where λi,g, λi,s and λi,b are the i-th largest eigenvalues of the matrices

(∆ + J )−1/2{∆−1 −∆−1
g }(∆ + J )−1/2, (∆ + J )−1/2{∆−1 −∆−1

s }(∆ + J )−1/2

and

(∆ + J )−1/2{∆−1 −∆−1
b }(∆ + J )−1/2.

χ2
i,1 represents a chi-squared distribution with degree of freedom 1 for ℓ = 1, . . . , p+3 and ∆g, ∆s and ∆b

are given in Appendix C. Furthermore, when E is normally distributed, we have Tg →d χ2
p+2, Ts →d χ2

2

and Tb →d χ2
p, respectively.
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In practice, λi,g(θ, µ
(3), µ(4)) is unknown and can be estimated by λN,i,g(θ̂, µ̂

(3), µ̂(4)), where

λN,i,g(θ̂, µ̂
(3), µ̂(4)) is the i-th largest eigenvalue of the (p+ 3)× (p+ 3) matrix

{∆N (θ̂) + JN (θ̂, µ̂(3), µ̂(4))}−1/2{∆−1
N (θ̂)−∆−1

g (θ̂)}{∆N (θ̂) + JN (θ̂, µ̂(3), µ̂(4))}−1/2.

A similar definition can be used in the other two cases.

Theorem 3.2 addresses the asymptotic properties of the proposed statistical tests under the three null

hypotheses. We consider the power or limiting distribution under local and fixed alternatives. The

fixed alternative is simple in that the powers of the three tests are close to 1. We then focus on the

local alternative. To this end, we set the true values under the local alternatives for the three tests,

respectively, as Hg
1 : θ̃ = θ̃g/

√
N = (ρg/

√
N, γg/

√
N, βT

g /
√
N)T, Hs

1 : (ρ, γ) = (ρs/
√
N, γs/

√
N) and

Hb
1 : β = βb/

√
N , where θ̃g is a constant vector and ∥θ̃g∥ < ∞. Additionally, ρs, γs and βb are the

non-zero constants and |ρs| < ∞, |γs| < ∞ and |βb| < ∞. The associated power functions are defined as

Bg = P(Tg > χ2
weight,g(1− α) | Hg

1 ), Bs = P(Ts > χ2
weight,s(1− α) | Hs

1)

and

Bb = P(Tb > χ2
weight,b(1− α) | Hb

1),

where χ2
weight,g(1−α), χ2

weight,s(1−α) and χ2
weight,b(1−α) are the 1−α theoretical quantiles of the weighted

chi-square distributions
∑p+3

i=1 λi,gχ
2
i,1,
∑p+3

i=1 λi,sχ
2
i,1 and

∑p+3
i=1 λi,bχ

2
i,1. The asymptotic properties of the

three power functions are given below.

Theorem 3.3. Under Conditions (C1)–(C4), we can obtain

lim
N→∞

(Bg) = 1− Fg{χ2
weight,g(1− α)− θTg ∆θg}, lim

N→∞
(Bs) = 1− Fs{χ2

weight,s(1− α)− θTs ∆θs}

and

lim
N→∞

(Bb) = 1− Fb{χ2
weight,b(1− α)− θTb ∆θb},

where Fg(·), Fs(·) and Fb(·) are the cumulative distribution functions of the weighted chi-square

distributions
∑p+3

i=1 λi,gχ
2
i,1,

∑p+3
i=1 λi,sχ

2
i,1 and

∑p+3
i=1 λi,bχ

2
i,1, where θg = (ρg, γg, β

T
g , 0)

T, θs = (ρs, γs,

0T, 0)T and θb = (0, 0, βT
l , 0)

T.

The above theorem reveals that the three tests Tg, Ts and Tb are consistent as long as θTg ∆θg → ∞,

θTs ∆θs → ∞ and θTb ∆θb → ∞.

3.3 Simulation studies

To demonstrate the finite sample performance of the proposed method, we present a total of five simulation

studies. These simulation studies are similar to each other except for the generating mechanism of the

adjacency matrix A. For illustration purposes, we consider Xi = (Xi1, Xi2)
T ∈ R2 with p = 2, and

Xi is generated from a two-dimensional normal distribution with a mean of 0 and a variance matrix

of 2I. The true value of θ = (ρ, γ, βT, σ2)T is set as θ0 = (0.1, 0.1, 0.5, 0.5, 1)T. The response variable

Y is then generated according to the model (2.1). We consider various network sizes N equaling 100,

200, 500, 1,000 and 2,000. For each simulation sample and network size, the experiment is randomly

replicated M = 1,000 times. We use τ̂ (m) to represent one particular estimator (e.g., ρ̂) obtained in the

m-th replication. We assume the true parameter to be τ0, and the root-mean-square error (RMSE) is

evaluated as

RMSE =

{
M−1

M∑
m=1

(τ̂ (m) − τ0)
2

}1/2

.

In addition to that, a 95% confidence interval (CI) is constructed as

CI(m) = (τ̂ (m) − z0.975ŜE
(m)

, τ̂ (m) + z0.975ŜE
(m)

),
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where ŜE
(m)

is computed according to the asymptotic covariance formula given in Theorem 3.1 by

replacing the unknown parameters with their estimates. Here, zα is the α-th quantile of a standard

normal distribution. Accordingly, the empirical coverage probability (ECP) is computed as

ECP = M−1
M∑

m=1

I(τ0 ∈ CI(r)),

where I(·) is the indicator function. Next, we present the generating mechanism of the five specific

network models and their simulation results.

Example 3.1 (Erdös-Rényi (ER) network model). We first present a simple network structure called

the ER network [9]. It is a random network with different aij ’s (i ̸= j) independently generated with a

fixed probability p. In this example, we set p = 5/N so that the resulting network structure is reasonably

sparse. One typical simulated network structure of this type and its degree distributions are displayed in

Figure 10. For this network structure, the histograms of both the in-degree and out-degree distributions

are somewhat symmetric. Simulation results are summarized in Table 2, where we find that the RMSE

values steadily decrease towards 0 and the ECP values are close to the nominal level of 95% as N → ∞.

This suggests that the estimators are asymptotically normal and the estimated standard error (i.e., ŜE)

can approximate the true standard error well.

Example 3.2 (Dyad independence model). We next consider a network with a dyad independence

structure [19]. Compared with the ER network, a dyad independence model allows aij to be dependent

on aji for any i < j. However, for any (i1, j1) ̸= (i2, j2) with i1 < j1 and i2 < j2, the two dyads

(ai1j1 , aj1i1) and (ai2j2 , aj2i2) are assumed to be independent. Specifically, we generate A as follows.

Define Zij = (aij , aji) for any 1 6 i < j 6 N . Next, set P{Zij = (1, 0)} = P{Zij = (0, 1)} = 5N−1 and

P{Zij = (1, 1)} = 0.5N−1. This leads to P{Zij = (0, 0)} = 1− 5.5N−1, which is close to 1 for a large N .

In this way, we generate Zij independently, leading to the final A and W . One typical simulated network

structure of this type and its degree distributions are displayed in Figure 11. For this network structure,

the histograms of both in-degree and out-degree distributions are approximately normal. The detailed

results are given in Table 3, and they are qualitatively similar to those in Table 2.
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Figure 10 (Color online) One particular random realization of the ER network model. (a) Visualization of the network

structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree distribution

Table 2 Simulation results for the ER network. The RMSE values are reported for every estimator. The ECPs (in %)

are given in parentheses

N ρ̂ γ̂ β̂1 β̂2 σ̂2

100 0.3218 (90.4) 0.2378 (89.4) 0.0505 (93.9) 0.0532 (93.9) 0.6799 (90.8)

200 0.1124 (91.8) 0.1627 (91.6) 0.0353 (95.1) 0.0345 (95.1) 0.1037 (93.5)

500 0.0628 (93.4) 0.0934 (93.6) 0.0215 (96.1) 0.0227 (96.1) 0.0630 (94.6)

1,000 0.0442 (95.3) 0.0641 (94.5) 0.0158 (95.1) 0.0161 (95.1) 0.0453 (93.8)

2,000 0.0305 (95.1) 0.0430 (95.0) 0.0117 (93.3) 0.0111 (93.3) 0.0314 (95.6)
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Example 3.3 (Stochastic block model). The third network model is a stochastic block structure

[26,29]. Specifically, letK = 5 be the total number of blocks. We then follow Zhu et al. [34], and randomly

assign a block label to each node with an equal probability of 1/K. Next, we set P(aij = 1) = 20N−1 if

i and j are in the same block, and P(aij = 1) = 0.02N−1 otherwise. Correspondingly, the nodes within

the same block are more likely to be connected to each other, while those from different blocks are less

likely to be connected. One typical simulated network structure of this type and its degree distributions

are displayed in Figure 12. For this network structure, the histograms of both the in-degree and out-

degree distributions are approximately normal. The results of the model are shown in Table 4; they are

qualitatively similar to those in Table 2.
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Figure 11 (Color online) One particular random realization of the dyad independence model. (a) Visualization of the

network structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree distribution

Table 3 Simulation results for the dyad independence model. The RMSE values are reported for every estimator. The

ECPs (in %) are given in parentheses

N ρ̂ γ̂ β̂1 β̂2 σ̂2

100 0.1704 (90.7) 0.2361 (89.5) 0.0541 (94.1) 0.0595 (94.1) 0.2210 (91.3)

200 0.1077 (92.6) 0.1587 (92.3) 0.0352 (94.9) 0.0349 (94.9) 0.1031 (92.3)

500 0.0651 (94.0) 0.0970 (93.3) 0.0216 (96.1) 0.0228 (96.1) 0.0632 (93.9)

1,000 0.0441 (95.8) 0.0664 (94.1) 0.0158 (94.9) 0.0162 (94.9) 0.0453 (93.5)

2,000 0.0329 (94.4) 0.0459 (95.6) 0.0118 (93.4) 0.0111 (93.4) 0.0316 (94.8)
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Figure 12 (Color online) One particular random realization of the stochastic block model. (a) Visualization of the network

structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree distribution

Table 4 Simulation results for the stochastic block model. The RMSE values are reported for every estimator. The ECPs

(in %) are given in parentheses

N ρ̂ γ̂ β̂1 β̂2 σ̂2

100 0.1451 (91.3) 0.2341 (91.3) 0.0506 (94.0) 0.0520 (94.0) 0.2687 (91.8)

200 0.0854 (94.1) 0.1511 (93.2) 0.0345 (95.0) 0.0334 (95.0) 0.1015 (92.6)

500 0.0568 (93.6) 0.0967 (94.7) 0.0214 (96.2) 0.0225 (96.2) 0.0630 (94.0)

1,000 0.0370 (95.7) 0.0669 (94.9) 0.0159 (95.3) 0.0162 (95.3) 0.0453 (93.4)

2,000 0.0276 (94.7) 0.0489 (94.4) 0.0118 (93.4) 0.0111 (93.4) 0.0314 (94.7)
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Example 3.4 (Power-law distributed model). The power-law distributed network structure is another

important network structure in practice [3, 7]. The main feature of a power-law distributed network

structure is that the majority of nodes (e.g., normal people) have very few connections, but a small

amount of nodes (e.g., movie stars) have large numbers of connections. To simulate such a network

structure, we follow Zhou et al. [32] and generate A as follows. First, for each node i, we generate its

in-degree, di =
∑

j aji, according to the discrete power-law distribution with P(di = k) = sk−α, where s

is a normalizing constant and the exponent parameter is set as α = 2. Next, for each i, we randomly

select di nodes as i’s potential followers. One typical simulated network structure of this type and its

degree distributions are displayed in Figure 13. For this network structure, the histograms of both the

in-degree and out-degree distributions are lightly skewed. The detailed simulated results are showed in

Table 5, and they are qualitatively similar to those in Table 2.

Example 3.5 (Popularity scaled latent space model). The last network structure is generated

according to the popularity scaled latent space model (PSLSM) of [6]. They assume a position for

each node in a hypothetically assumed latent space. Two nodes therefore are more likely to be connected

with each other if they stay close to each other. In addition, the nodes with large popularity values are

likely to have more connections. Specifically, for each node i, we generate its latent space position Zi ∈ R1

using a standard normal distribution. Next, the popularity parameter λi (1 6 i 6 N) is independent

and identically drawn from a power-law type distribution P(λi = k) = sk−α, where s is a normalizing

constant and α = 1.5. Conditional on Z = {Zi : 1 6 i 6 N}, the aij ’s are independently generated

according to

P(aij = 1 | Zi, Zj , λj) = exp

{
N2(Zi − Zj)

2

2λ2
j

}
.

One typical simulated network structure of this type and its degree distributions are displayed in Figure 14.

For this network structure, the in-degree histogram is highly skewed, while the out-degree histogram is

approximately symmetric. The numerical results are summarized in Table 6, and they are qualitatively

similar to those in Table 2.
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Figure 13 (Color online) One particular random realization of the power-law model. (a) Visualization of the network

structure. (b) Histogram of the in-degree distribution. (c) Histogram of the out-degree distribution

Table 5 Simulation results for the power-law model. The RMSE values are reported for every estimator. The ECPs

(in %) are given in parentheses

N ρ̂ γ̂ β̂1 β̂2 σ̂2

100 0.2042 (89.3) 0.3164 (87.6) 0.0538 (92.8) 0.0537 (92.8) 0.1811 (90.9)

200 0.1121 (93.4) 0.1723 (91.2) 0.0354 (94.7) 0.0346 (94.7) 0.1039 (93.3)

500 0.0745 (94.0) 0.1100 (93.8) 0.0216 (95.7) 0.0228 (95.7) 0.0628 (94.6)

1,000 0.0543 (94.8) 0.0819 (94.3) 0.0159 (95.3) 0.0162 (95.3) 0.0453 (94.3)

2,000 0.0394 (94.4) 0.0631 (94.4) 0.0118 (93.4) 0.0111 (93.4) 0.0316 (95.1)
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Figure 14 (Color online) One particular random realization of the PSLSM. (a) Visualization of the network structure.

(b) Histogram of the in-degree distribution. (c) Histogram of the out-degree distribution

Table 6 Simulation results for the PSLSM. The RMSE values are reported for every estimator. The ECPs (in %) are

given in parentheses

N ρ̂ γ̂ β̂1 β̂2 σ̂2

100 0.1444 (91.1) 0.2455 (87.9) 0.0515 (94.5) 0.0547 (94.5) 0.1478 (92.1)

200 0.0897 (93.3) 0.1464 (92.7) 0.0360 (93.9) 0.0358 (93.9) 0.1005 (93.0)

500 0.0527 (94.9) 0.0890 (93.9) 0.0236 (93.5) 0.0223 (93.5) 0.0654 (93.5)

1,000 0.0413 (94.4) 0.0656 (94.8) 0.0156 (96.1) 0.0156 (96.1) 0.0462 (94.0)

2,000 0.0276 (94.8) 0.0427 (94.7) 0.0114 (95.4) 0.0113 (95.4) 0.0319 (95.1)

3.4 Hypothesis testing results

We further study the performance of the quasi-likelihood ratio tests by their empirical size and power

with a significance level of 0.05. First, we evaluate the empirical size of the quasi-likelihood ratio test

under three different cases. Case 1 sets the true value of θ = (ρ, γ, βT, σ2)T as θ0 = (0, 0, 0, 0, 1)T so that

the empirical size of the global significant test can be evaluated. Case 2 sets θ0 = (0, 0, 0.1, 0.1, 1)T so that

the empirical size of the shareholder network effect can be evaluated. Case 3 sets θ0 = (0.1, 0.1, 0, 0, 1)T

so that the empirical size of the industry effect can be evaluated. Various network sizes N equaling

500, 1,000 and 2,000 are considered. For each simulation example and network size, the experiment

is randomly replicated M = 1,000 times. Let T
(m)
g represent the test statistic for global significance

obtained in the m-th replication. We independently and identically generate

{χ2
i,n : i = 1, . . . , p+ 3, n = 1, . . . , 10000}

from the chi-squared distribution with degree of freedom 1. The m-th p-value is given by

pm-value = 10000−1
∑
n

I

{
T (m)
g >

p+3∑
i=1

λN,i,g(θ̂, µ̂
(3), µ̂(4))χ2

i,n

}
,

where λN,i,g(θ̂, µ̂
(3), µ̂(4)) is a consistent estimator of λi,g(θ̂, µ̂

(3), µ̂(4)) under the null hypothesis stated

below Theorem 3.2. The other two testing methods are evaluated similarly, and the simulated results are

summarized in Table 7.

Second, we examine the empirical power of the quasi-likelihood ratio test with a significance level

of 0.05 under the same setting except for a different θ0 = (0.1, 0.1, 0.05, 0.05, 1)T. The simulated

results are summarized in Table 8. For the purposes of illustration, we also consider the setting of

θ0 = (1.5ϱ, 1.5ϱ, 0.8ϱ, 0.8ϱ, 1) with a fixed sample size N = 500, where ϱ equaling 0.02, 0.05 and 0.10

measures the signal strength of the parameters. The simulation results are shown in Table 9. From

Tables 7–9, we can draw the following conclusions. The first is that the empirical sizes of the three tests

are close to a confidence level of 0.05. The second is that the empirical powers of the three tests tend to

100% when the sample size N or the signal strength ϱ obtains larger. These two findings indicate that

the three tests perform well when N is large.
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Table 7 Empirical size of the quasi-likelihood ratio test

N Case ER DI SB PLD PSLSM

1 0.042 0.043 0.017 0.039 0.027

500 2 0.063 0.067 0.031 0.050 0.053

3 0.058 0.078 0.062 0.083 0.070

1 0.037 0.037 0.023 0.042 0.038

1,000 2 0.055 0.047 0.058 0.054 0.060

3 0.055 0.061 0.054 0.064 0.061

1 0.041 0.038 0.033 0.040 0.042

2,000 2 0.054 0.045 0.042 0.063 0.050

3 0.066 0.060 0.059 0.060 0.054

Table 8 Empirical power of the quasi-likelihood ratio test

N Case ER DI SB PLD PSLSM

1 0.954 0.959 0.865 0.891 0.967

500 2 0.762 0.769 0.566 0.503 0.777

3 0.841 0.834 0.807 0.841 0.830

1 0.999 1.000 0.962 0.998 0.999

1,000 2 0.966 0.970 0.807 0.865 0.944

3 0.984 0.977 0.961 0.981 0.982

1 1.000 1.000 0.998 1.000 1.000

2,000 2 1.000 1.000 0.951 0.992 0.999

3 1.000 1.000 1.000 1.000 1.000

Table 9 Empirical power of the hypothesis testing results

ϱ Case ER DI SB PLD PSLSM

1 0.158 0.137 0.117 0.132 0.122

0.02 2 0.105 0.091 0.104 0.070 0.067

3 0.175 0.169 0.171 0.184 0.171

1 0.776 0.771 0.634 0.662 0.777

0.05 2 0.503 0.490 0.349 0.302 0.512

3 0.661 0.646 0.631 0.663 0.661

1 1.000 0.999 0.997 1.000 1.000

0.10 2 0.990 0.988 0.910 0.850 0.987

3 0.996 0.997 0.994 1.000 0.998

4 Concluding remarks

In this article, we proposed an SARMA model to study inter-stock dependence among multiple stocks

in the Chinese stock market. To investigate the effect of inter-stock dependence, a common shareholder

network was used to construct an adjacency matrix. The proposed model then made use of the inter-stock

dependence, error dependence and exogenous industry information. A thoroughly developed application

using the Chinese stock market data was then extensively studied. To solve the parameter estimation

problem, a quasi-maximum likelihood estimation method was proposed, and the associated asymptotic

properties were established. The performance of the QMLE was proven by extensive simulation studies.

To conclude this article, we discuss several interesting topics for future study. First, for a large-

scale dataset, calculating the QMLE is computationally expensive [22, 31]. This is mainly because the

determinant and inverse of an ultra-high-dimensional matrix are involved. Some more computationally
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efficient methods could be considered, such as GMM. Second, many responses in the real world are time

series observations. Therefore, time dynamics could be considered and statistically modeled. Third,

the SARMA model requires the responses to be continuous. However, discrete responses are frequently

encountered in real data analysis. This is also an interesting topic that needs to be further investigated.

Lastly, the network connectivity in our case is known and does not need to be estimated. However, a more

realistic situation is that the network adjacency matrix is estimated with the non-ignorable statistical

error. Thus, exactly how to apply the proposed method is not yet clear at the moment. We consider this

an excellent topic for future study.
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Appendix A Four useful lemmas

This appendix introduces four useful lemmas. Before providing the technical lemmas, we first introduce

some notations. Let ∥ · ∥s denote the vector s-norm or the matrix s-norm for 1 6 s 6 ∞. In other

words, for any generic vector x = (x1, . . . , xq)
T ∈ Rq, ∥x∥s = (

∑q
i=1 |xi|s)1/s, and for any generic matrix

G ∈ Rm×q, we have

∥G∥s = sup{∥Gx∥s/∥x∥s : x ∈ Rq×1 and x ̸= 0}.

In addition, define the element-wise ℓ∞ norm for any generic matrix G as |G|∞ = ∥vec(G)∥∞, where

vec(G) denotes the vectorization for any generic matrix G. We next introduce the following four useful

lemmas. Since Lemma A.2 is directly modified from [20], we only present the proofs of the remaining

three lemmas.

Lemma A.1. For any vector α = (α1, . . . , αp)
T ∈ Rp, we have the matrices M ∈ RN×p and U

∈ RN×N . Then for any s > 1, we have ∥UMα∥s 6 N1/s|M |∞∥U∥∞∥α∥1.

Proof. Write U = (uij)N×N ∈ RN×N and M = (mij)N×p ∈ RN×p. For any p-dimensional vector

α = (α1, . . . , αp)
T and a fixed 1 6 i 6 N , we have

∣∣∣∣ N∑
j=1

p∑
k=1

uijmjkαk

∣∣∣∣ 6 N∑
j=1

p∑
k=1

|uij ||mjk||αk| =
p∑

k=1

|αk|
N∑
j=1

|uij ||mjk|

6 |M |∞
p∑

k=1

|αk| max
16i6N

N∑
j=1

|uij | = |M |∞∥U∥∞∥α∥1.

Then, we have

∥UMα∥s =
{ N∑

i=1

∣∣∣∣ N∑
j=1

p∑
k=1

uijmjkxk

∣∣∣∣s}1/s

6 N1/s|M |∞∥U∥∞∥α∥1,

which completes the proof.
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Lemma A.2. Assume εi’s are independent and identically distributed with a mean of 0 and a finite

variance of σ2. Define

Q = ETHE +BTE − σ2 tr(H),

where H = (hij)N×N ∈ RN×N and B = (b1, . . . , bN )T ∈ RN×1. Suppose that the following assumptions

are satisfied: (A) supN>1 ∥H∥1 = supN>1

∑N
i=1 |hij | < ∞, (B) for some η1 > 0, supN>1 N

−1∥B∥2+η1

2+η1

< ∞, and (C) for some η2 > 0, E|εi|4+η2 < ∞. Then we have E(Q) = 0 and

σ2
Q := σ4

N∑
i=1

∑
j ̸=i

h2
ij + 2

N∑
i=1

∑
j ̸=i

hijbiµ
(3) + σ2

N∑
i=1

b2i + {µ(4) − σ4}
N∑
i=1

h2
ii,

where µ(s) = E(εsi ) for s = 3, 4. Furthermore, suppose (D) N−1σ2
Q > c for some c > 0. Then we obtain

N−1/2−ϵQ →p 0 for any ϵ > 0 and σ−1
Q Q →d N(0, 1).

Lemma A.3. Define

∂ℓ(θ)/∂θ = (∂ℓ(θ)/∂ρ, ∂ℓ(θ)/∂γ, ∂ℓ(θ)/∂β, ∂ℓ(θ)/∂σ2)T.

Under Conditions (C1)–(C4), we have that N−1/2∂ℓ(θ)/∂θ →d N(0,∆+ J ) as N → ∞.

Proof. Recall that K = I − ρW , S = I + γW and G = (I − ρW )Y − Xβ. We then compute their

first-order derivatives as

∂ℓ(θ)

∂ρ
= −tr(K−1W ) +

1

σ2
YTWT(ST)−1S−1G,

∂ℓ(θ)

∂γ
= −tr(S−1W ) +

1

σ2
GT(ST)−1WT(ST)−1S−1G,

∂ℓ(θ)

∂β
=

1

σ2
XT(ST)−1S−1G,

∂ℓ(θ)

∂σ2
= − N

2σ2
+

1

2σ4
GT(ST)−1S−1G.

According to the model (2.1), we have

Y = (I − ρW )−1{Xβ + (I + γW )E}.

Then after a tedious calculation, we obtain

∂ℓ(θ)

∂θ
=


ETH1E

...

ETHLE

+


B1

...

BL

 E − σ2


tr(H1)

...

tr(HL)

 , (A.1)

where L = 4, H1 = (KT)−1WT, H2 = (ST)−1WT, H3 = 1/2σ4I, H4 = 0N×N , B1 =
1
σ2 (Xβ)T(KT)−1WT(ST)−1, B2 = 0, B3 = 0 and B4 = XT(ST)−1. Let

Ql = ETHlE +BT
l E − σ2 tr(Hl),

where l = 1, . . . , 4. In addition, for any generic vector t = (t1, . . . , t4)
T ̸= 0, let

R = tTQ(t) = ETH(t)E + tTB(t)E − σ2 tr{H(t)},

where Q(t) = (Q1, . . . , Q4)
T, H(t) = (

∑4
l=1 tlHl)N×N and B(t) = (B1, . . . , B4)

T.

According to Conditions (C2)–(C3) and Lemma A.1, we have

∥H1∥1 6 ∥K−1∥∞∥W∥∞ < ∞, ∥H2∥1 6 ∥S−1∥∞∥W∥∞ < ∞,

∥H3∥1 =
1

2σ4
∥I∥1 =

1

2σ4
< ∞, ∥H4∥1 = 0.



Zhang R et al. Sci China Math November 2022 Vol. 65 No. 11 2237

Consequently, we obtain

sup
N>1

∥H(t)∥1 < ∞.

As a result, Condition (A) of Lemma A.2 is satisfied. According to Conditions (C2) and (C3) and

Lemma A.1 again, for any η1 > 0, we have

N−1∥B1∥2+η1

2+η1
= N−1 1

σ2(2+η1)
{∥(Xβ)T(KT)−1WT(ST)−1∥2+η1

2+η1
}

6 N−1 1

σ2(2+η1)
{∥β∥2+η1

1 |X|2+η1
∞ ∥K−1∥2+η1

∞ ∥W∥2+η1
∞ ∥S−1∥2+η1

∞ } < ∞,

N−1∥B2∥2+η1

2+η1
= 0, N−1∥B3∥2+η1

2+η1
= 0,

N−1∥B4∥2+η1

2+η1
= ∥XT(ST)−1∥2+η1

2+η1
6 |X|2+η1

∞ ∥S−1∥2+η1
∞ < ∞.

This implies that

sup
N>1

∥B(t)∥2+η1

2+η1
6 41+η1 max

16l64
|tl|2+η1 sup

N>1
N−1∥Bl∥2+η1

2+η1
< ∞.

Hence, Condition (B) of Lemma A.2 is satisfied. Condition (C) of Lemma A.2 is obviously satisfied by

Condition (C4). We next evaluate each component of E{∂ℓ(θ)/∂θ} separately as follows:

E

{
∂ℓ(θ)

∂ρ

}
= −tr(K−1W ) + tr{(KT)−1WT} = 0,

E

{
∂ℓ(θ)

∂γ

}
= −tr(S−1W ) + tr{WT(ST)−1} = 0,

E

{
∂ℓ(θ)

∂β

}
= − 1

σ2
E{XT(ST)−1(S−1KK−1(Xβ + SE)− S−1Xβ)}

= − 1

σ2
E{XT(ST)−1(S−1Xβ − S−1Xβ)} = 0,

E

{
∂ℓ(θ)

∂σ2

}
=

N

2σ4
− 1

σ6
E(ETE) = N

2σ4
− 1

σ6
σ2tr(I) = 0.

Note that E(EET) = σ2I and E(E) = 0. We then compute N−1cov{∂ℓ(θ)/∂θ} as

1

N
E

{
∂ℓ(θ)

∂ρ

∂ℓ(θ)

∂ρ

}
=

1

N
tr(WK−1K−1W )− 2

N
tr{WT(KT)−1K−1W}

+
1

σ2N
tr{(Xβ)T(KT)−1WT(ST)−1S−1WK−1Xβ}

+
2

σ4N
tr{(Xβ)T(KT)−1WT(ST)−1WK−1}µ(3)

+
1

σ4N
tr{(KT)−1WTWK−1}µ(4) = ∆N,11 + JN,11 → ∆11 + J11,

1

N
E

{
∂ℓ(θ)

∂γ

∂ℓ(θ)

∂γ

}
=

1

σ2N
XT(ST)−1S−1X = ∆N,33 + JN,33 → ∆33 + J33,

1

N
E

{
∂ℓ(θ)

∂σ2

∂ℓ(θ)

∂σ2

}
= − 1

4σ4
+

1

4σ8N
µ(4) = ∆N,44 + JN,44 → ∆44 + J44,

1

N
E

{
∂ℓ(θ)

∂ρ

∂ℓ(θ)

∂γ

}
=

1

N
tr(WK−1S−1W )− 2

N
tr{WT(KT)−1S−1W}

+
1

σ4N
tr{(Xβ)T(KT)−1WT(ST)−1WT(ST)−1}µ(3)

+
1

σ4N
tr{(KT)−1WTWT(ST)−1}µ(4) = ∆N,12 + JN,12 → ∆12 + J12,

1

N
E

{
∂ℓ(θ)

∂ρ

∂ℓ(θ)

∂βT

}
=

1

σ2N
XT(ST)−1S−1WK−1Xβ +

1

σ4N
XT(ST)−1WK−1µ(3)
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= ∆N,13 + JN,13 → ∆13 + J13,

1

N
E

{
∂ℓ(θ)

∂ρ

∂ℓ(θ)

∂σ2

}
=

1

2σ4N
tr(XβK−1WS−1)µ(3) +

1

2σ4N
tr(K−1W )µ(4)

= ∆N,14 + JN,14 → ∆14 + J14,

1

N
E

{
∂ℓ(θ)

∂γ

∂ℓ(θ)

∂βT

}
=

1

σ4N
WT(ST)−1S−1Xµ(3) = ∆N,23 + JN,23 → ∆23 + J23,

1

N
E

{
∂ℓ(θ)

∂γ

∂ℓ(θ)

∂σ2

}
=

1

2σ6N
tr(S−1W )µ(4) = ∆N,24 + JN,24 → ∆24 + J24,

1

N
E

{
∂ℓ(θ)

∂σ2

∂ℓ(θ)

∂βT

}
=

2

σ2N
E{XT(ST)−1E} = 0 = ∆N,34 + JN,34 → ∆34 + J34,

where the convergence is due to Condition (C4). We then have

N−1cov{∂ℓ(θ)/∂θ} = ∆N + JN → ∆+ J ,

and Condition (D) of Lemma A.2 is satisfied. In summary, the equation

N−1/2R = N−1/2tTQ(t) →d N(0, tT(∆ + J )t)

can be verified. Together with the Cramér-Wold device, it implies that N−1/2∂ℓ(θ)/∂θ →d N(0,∆+J ),

which completes the proof of Lemma A.3.

Lemma A.4. Define ℓ(2)(θ) = ∂2ℓ(θ)/∂θ∂θT, and according to Conditions (C1)–(C4), we have

−N−1ℓ(2)(θ) →p ∆ as N → ∞.

Proof. We first evaluate the second-order derivatives of ℓ(θ) as follows:

∂2ℓ(θ)

∂ρ2
= −tr(WK−1K−1W )− 1

σ2
YTWT(ST)−1S−1WY,

∂2ℓ(θ)

∂γ2
= tr(WS−1S−1W )− 2

σ2
GT(ST)−1WT(ST)−1WT(ST)−1S−1G

− 1

σ2
GT(ST)−1WT(ST)−1S−1WS−1G,

∂2ℓ(θ)

∂β∂βT
= − 1

σ2
X(ST)−1S−1X,

∂2ℓ(θ)

(∂σ2)2
=

N

2σ4
− 1

σ6
GT(ST)−1S−1G,

∂2ℓ(θ)

∂ρ∂γ
= − 1

σ2
YTWT(ST)−1WT(ST)−1S−1G− 1

σ2
YTWT(ST)−1S−1WS−1G,

∂2ℓ(θ)

∂ρ∂σ2
= − 1

σ4
YTWT(ST)−1S−1G,

∂2ℓ(θ)

∂γ∂σ2
= − 1

σ4
GT(ST)−1WT(ST)−1K−1G,

∂2ℓ(θ)

∂ρ∂βT
= − 1

σ2
XT(ST)−1S−1WY,

∂2ℓ(θ)

∂γ∂βT
= − 2

σ2
XT(ST)−1WT(ST)−1S−1G,

∂2ℓ(θ)

∂σ2∂βT
= − 1

σ4
(S−1X)TS−1G.

Note that E(E) = 0 and E(EET) = σ2I. Then −N−1E{ℓ(2)(θ)} = ∆N can be verified. Lastly, we prove

−N−1ℓ(2)(θ) = ∆N + op(1). First, we prove −N−1ℓ(2)(θ) = −N−1E{ℓ(2)(θ)}+ op(1). After an algebraic

calculation, we have

−N−1 ∂
2ℓ(θ)

∂ρ2
= − 1

N
tr{WT(KT)−1K−1W}+ 1

Nσ2
{εTWT(KT)−1K−1Wε}

+
2

Nσ2
{βTXTWT(KT)−1(ST)−1K−1Wε} − 1

N
E

{
∂2ℓ(θ)

∂ρ2

}
.

Let H = WT(KT)−1K−1W and B = βTXTWT(KT)−1(ST)−1K−1W . According to Lemma A.1 and

Conditions (C2) and (C3), we have

sup
N>1

∥WT(KT)−1K−1W∥1 < ∞
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and

sup
N>1

N−1∥vecB∥2+η1

2+η1
< ∞.

Thus, Conditions (A) and (B) of Lemma A.2 hold. Accordingly,

−N−1∂2ℓ(θ)/∂ρ2 = −N−1E{∂2ℓ(θ)/∂ρ2}+ op(1)

is verified by Lemma A.2. Following the same logic, we can show that

−N−1ℓ(2)(θ) = −N−1E{ℓ(2)(θ)}+ op(1).

Consequently, the variance of each component of N−1ℓ(2)(θ) is O(N−1). Combining this result with

Condition (C4), we have −N−1ℓ(2)(θ) = ∆N + op(1) →p ∆. This completes the proof of Lemma A.4.

Appendix B Proof of Theorem 3.1

Theorem 3.1 is to be proved in the following two steps. In the first step, we show that θ̂ is
√
N -consistent.

In the second step, we verify that θ̂ is asymptotically normal.

Step 1 (Consistency). Here, we want to prove that θ̂ is
√
N -consistent, i.e., there is a local optimizer θ̂

such that ∥θ̂ − θ∥ = Op(N
−1/2). Following Fan and Li [12], it suffices to show that for any ϵ > 0, there

is a finite constant C > 0 such that

P
{

sup
∥u∥=c

ℓ(θ +N−1/2u) < ℓ(θ)
}
> 1− ϵ. (B.1)

To this end, we employ Taylor’s expansion and obtain

R(θ) = ℓ(θ +N−1/2u)− ℓ(θ) = N−1/2uT ∂ℓ(θ)

∂θ
+ (2N)−1uT ∂2ℓ(θ)

∂θ∂θT
u+ op(1). (B.2)

According to Lemma A.3, we know that N−1/2∂ℓ(θ)/∂θ = Op(1). In addition, according to Lemma A.4,

we have N−1∂2ℓ(θ)/∂θ∂θT = −∆N + op(1) → −∆. Because of ∥u∥ = C, the first term in (B.2) is

uniformly bounded by C∥N−1/2∂ℓ(θ)/∂θ∥, which is linear in C with the coefficient ∥N−1/2∂ℓ(θ)/∂θ∥
= Op(1). On the other hand, the second term in (B.2) is uniformly larger than (2N)−1λmin(∆N )C2

→p (2N)−1λmin(∆)C2, where λmin(M) refers to the minimal eigenvalue of any generic matrix M . As a

result, with the probability tending to one, the second term in (B.2) is uniformly larger than 0.5λmin∆C2,

which is quadratic in C. Therefore, as long as C is sufficiently large, the second term would dominate

the first term. This completes the first part of the proof.

Step 2 (Normality). Here, we are going to show that θ̂ is asymptotically normal. We take a Taylor’s

expansion of the estimation equation ∂ℓ(θ̂)/∂θ = 0 at the true value θ, leading to

∂ℓ(θ̂)/∂θ = ∂ℓ(θ)/∂θ + ∂2ℓ(θ)/∂θ∂θT(θ̂ − θ){1 + op(1)} = 0.

We then have

√
N(θ̂ − θ) =

{
− 1

N

∂2ℓ(θ)

∂θ∂θT

}−1
1√
N

∂ℓ(θ)

∂θ
{1 + op(1)}.

According to Slutsky’s theorem and Lemmas A.3 and A.4, we then have

√
N(θ̂ − θ) =

1√
N

{
d2ℓ(θ)

dθdθT

}−1
dℓ(θ)

dθ
+ op(1) →d N(0,∆−1 +∆−1J∆−1), (B.3)

which completes the entire proof of Theorem 3.1.
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Appendix C Proof of Theorem 3.2

In the proof of Theorem 3.2, we only present the proof for Tg, since the results for Ts and Tb can

be proved in a similar manner. Under the null hypothesis of H0 : θ̃ = 0, we have the constrained

log-likelihood as ℓg(θ) = −N/2 log(σ2) − (2σ2)−1YTY. We can obtain the constrained QMLE of θ as

θ̂g = argmaxθ ℓg(θ) = (0, 0,0T, σ̂)T with σ̂ = N−1YTY. Then following the same logic in the proof

of (B.3), we obtain

N1/2(θ̂g − θ) = N−1/2∆−1
g (θ)

∂ℓ(θ)

∂θ
+ op(1), (C.1)

where ∆g is the information matrix of ℓg(θ) and we have

∆g =

(
0(p+2)×(p+2) 0(p+2)×1

01×(p+2) ∆44

)

with ∆44 = σ−4/2. Combining this result with Theorem 3.1, we have proven that both θ̂ and θ̂g are√
N -consistent. According to (B.3) and (C.1), we can obtain

N1/2(θ̂g − θ̂) = N−1/2
(
∆−1

g −∆−1
)∂ℓ(θ)

∂θ
+ op(1) = Op(1). (C.2)

Applying Taylor’s expansion, we have

Tg = −2{ℓ(θ̂g)− ℓ(θ̂)} = (θ̂g − θ̂)T
∂2ℓ(θ̆)

∂θ∂θT
(θ̂g − θ̂),

where θ̆ lies between θ̂ and θ̂g and it is also
√
N -consistent. According to Conditions (C1)–(C4) and

following the same logic in the proof of Lemma A.4, we have −N−1{∂2ℓ(θ̆)}/(∂θ∂θT) →p ∆. Combining

the above result with (C.2), we have

Tg = N−1/2(θ̂g − θ̂)T∆N−1/2(θ̂g − θ̂) + op(1)

=

{
N−1/2(∆−1

g −∆−1)
∂ℓ(θ)

∂θ

}T

∆

{
N−1/2(∆−1

g −∆−1)
∂ℓ(θ)

∂θ

}
+ op(1)

=

{
N−1/2(∆ + J )−1/2 ∂ℓ(θ)

∂θ

}T

(∆ + J )1/2(∆−1
g −∆−1)∆

× (∆−1
g −∆−1)(∆ + J )1/2

{
N−1/2(∆ + J )−1/2 ∂ℓ(θ)

∂θ

}
+ op(1).

We can verify that ∆−1
g ∆∆−1

g = ∆−1
g and (∆−1

g − ∆−1)T∆(∆−1
g − ∆−1) = ∆−1

g − ∆, and we further

obtain

Tg =

{
N−1/2(∆ + J )−1/2 ∂ℓ(θ)

∂θ

}T

(∆ + J )1/2(∆−1
g −∆)

× (∆ + J )1/2
{
N−1/2(∆ + J )−1/2 ∂ℓ(θ)

∂θ

}
+ op(1).

According to Lemma A.3, we have

N−1/2(∆ + J )−1/2{∂ℓ(θ)}/∂θ →d N(0, I),

where the dimension of I is p + 3. Let λ1,g(θ), . . . , λp+3,g be the eigenvalues of (∆ + J )1/2(∆−1
g

−∆)(∆ + J )1/2. According to the continuous mapping theorem and Slutsky’s theorem, we obtain

Tg →d

p+3∑
i=1

λi,g(θ, µ
(3), µ(4))χ2

i,1.
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This completes the first part of the proof.

Under the normal assumption of E , the matrix JN = 0. According to Condition (C4), we have J = 0,

which leads to ∆+J = ∆. In addition, by using the fact that (∆−1
g −∆)T∆(∆−1

g −∆) = ∆−1
g −∆, the

symmetric matrix ∆1/2(∆−1
g −∆)∆1/2 is idempotent. Let ∆ = (∆1,∆2,∆3,∆4), where ∆i (i = 1, 2, 3, 4)

correspond to the blocks of ∆−1
g . Then we have

tr{∆1/2(∆−1
g −∆)∆1/2} = tr{(∆−1

g −∆)∆} = tr(I −∆−1
g ∆) = tr

{(
I 0(p+2)×1

−∆−1
44 ∆3 0

)}
= p+ 2.

Combining the above results, we have Tg →d χ2
p+2, which completes the entire proof.

Appendix D Proof of Theorem 3.3

In this section, we only present the proof of Bg, while the results for Bs and Bb can be proved in a similar

manner. Let the true value under the local alternative be

θg0 = (ρg/
√
N, γg/

√
N, βT

g /
√
N,σ2)T,

the estimator under the null alternative be θ̂g = (0, 0,0T, σ̂)T with σ̂ = N−1YTY, and the global quasi-

maximum likelihood estimator be θ̂ = argmaxθ ℓ(θ). We take a Taylor’s expansion of ∂ℓ(θ̂g)/∂θ = 0 at

θg0 − θgN , where θgN = θg/
√
N = (θ̃Tg /

√
N, 0)T and θg = (ρg, γg, β

T
g , 0)

T. This leads to

∂ℓ(θ̂g)/∂θ =
∂ℓ(θg0 − θgN )

∂θ
+

∂2ℓ(θ̆g)

∂θ∂θT
(θ̂g − (θg0 − θgN )),

where θ̆g lies between θ̂g and θg0 − θgN . We then have

√
N(θ̂g − θg0) =

{
− 1

N

∂2ℓ(θ̆g)

∂θ∂θT

}−1
1√
N

∂ℓ(θg0 − θgN )

∂θ
−

√
NθgN ,

√
N(θ̂g − θ̂) = N−1/2(∆−1

g −∆−1)
∂ℓ(θg0)

∂θ
−

√
NθgN + op(1).

By Theorem 3.1 and Lemma A.4, we have

√
N(θ̂ − θg0) →d N(0,∆−1 +∆−1J∆−1)

and

−N−1{∂2ℓ(θ̆)}/(∂θ∂θT) →p ∆.

Applying Taylor’s expansion and θTgN → 0 as N → ∞, we have

Tg = −2{ℓ(θ̂g)− ℓ(θ̂)} = (θ̂g − θ̂)T
∂2ℓ(θ̆)

∂θ∂θT
(θ̂g − θ̂)

=

{
N−1/2(∆ + J )−1/2 ∂ℓ(θ)

∂θ

}T

(∆ + J )1/2(∆−1
g −∆)(∆ + J )1/2

×
{
N−1/2(∆ + J )−1/2 ∂ℓ(θ)

∂θ

}
+ θTg ∆θg + op(1).

According to Slutsky’s theorem, we obtain

Tg →d

p+3∑
i=1

λi,gχ
2
i,1 +

√
NθTgN∆

√
NθgN

under the local alternative setting, where λ1,g, . . . , λp+3,g are the eigenvalues of

(∆ + J )1/2(∆−1
g −∆)(∆ + J )1/2.
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The power function is defined as

Bg = P(Tg > χ2
weight,g(1− α) | H1) = P

( p+3∑
i=1

λi,gχ
2
i,1 + θTg ∆θg > χ2

weight,g(1− α)

)

= P

(∣∣∣∣ p+3∑
i=1

λi,gχ
2
i,1

∣∣∣∣ > χ2
weight,g(1− α)− θTg ∆θg

)
= 1− Fg{χ2

weight,g(1− α)− θTg ∆θg},

where χ2
weight,g(1 − α) is the 1 − α theoretical quantile of the weighted chi-square

∑p+3
i=1 λi,gχ

2
i,1, Fg(·)

is the cumulative distribution function of the weight chi-square distribution
∑p+3

i=1 λi,gχ
2
i,1 and θg =

(ρg, γg, β
T
g , 0)

T. Then we can prove that

lim
N→∞

Bg = 1− Fg{χ2
weight,g(1− α)− θTg ∆θg}.
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