
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:5909 | https://doi.org/10.1038/s41598-022-09910-6

www.nature.com/scientificreports

A note on factor normalization
for deep neural network models
Haobo Qi1, Jing Zhou2* & Hansheng Wang1

Deep neural network (DNN) models often involve high-dimensional features. In most cases, these
high-dimensional features can be decomposed into two parts: a low-dimensional factor and residual
features with much-reduced variability and inter-feature correlation. This decomposition has several
interesting theoretical implications for DNN training. Based on these implications, we develop a
novel factor normalization method for better performance. The proposed method leads to a new deep
learning model with two important characteristics. First, it allows factor-related feature extraction,
and second, it allows for adaptive learning rates for factors and residuals. These model features
improve the convergence speed on both training and testing datasets. Multiple empirical experiments
are presented to demonstrate the model’s superior performance.

In recent decades, the progress in deep learning, together with advances in graphics processing unit (GPU)
devices, has led to the growing popularity of deep neural network (DNN) models in both academia and industry.
DNN models have been widely used in various fields for applications such as image classification, speech recogni-
tion, and machine translation. However, because of their deep structure, most DNN models are extremely difficult
to train. Practical training of a DNN model is often extremely time consuming and highly depends on empirical
experience. Therefore, a series of effective optimization methods have been developed for faster DNN training.

According to a recent survey paper1, most optimization methods with explicit derivatives can be roughly
categorized into two groups: first-order optimization methods and high-order optimization methods. The widely
used stochastic gradient descent (SGD) algorithm and its variants2,3 are typical examples of first-order optimiza-
tion methods. The SGD algorithm computes only the first-order derivatives (i.e., gradient) using a randomly
sampled batch. Thus, the SGD algorithm can handle large datasets with limited computational resources. Unfor-
tunately, the practical feasibility of SGD comes at the cost of sublinear convergence speed4. For better convergence
speed, various accelerated SGD algorithms have been developed, for instance, the popularly used momentum
method5,6 and the Nesterov accelerated gradient descent (NAG)7,8 method. Both methods take into consid-
eration information from the previous update gradient direction. Further improvements including AdaGrad9,
AdaDelta10, RMSprop11 and Adam12 consider element-wise learning rate adjustment, which are known as the
adaptive learning rate methods. For a more stable gradient estimation, the stochastic average gradient (SAG)13
and stochastic variance reduction gradient (SVRG)4 methods have also been developed.

In addition to the first-order optimization methods, high-order optimization methods also exist. Popular
examples include Newton’s method and its variants14,15. Compared to the first-order methods, high-order meth-
ods tend to have faster convergence speed because they consider Hessian matrix information. For example, New-
ton’s method can achieve a quadratic convergence speed under appropriate conditions16. However, calculating
and storing the Hessian matrix and its inverse are extremely expensive in terms of both time and storage. This has
led to the development of approximation methods, such as the quasi-Newton method16 and the stochastic quasi-
Newton method17. The idea behind these methods is to approximate the inverse Hessian matrix using a positive
definite matrix. Popular examples include the Davidon-Fletcher-Powell18, Broyden-Fletcher-Goldfarb-Shanno
(BFGS)19,20, and limited-memory BFGS21 methods. Moreover, as a useful technique for achieving fast conver-
gence, various preconditioning techniques are also commonly used22. The basic idea of preconditioning is to
transform a difficult or ill-conditioned linear system (e.g., Aθ = b ) into an easier system with better conditions23.
Consequently, the information contained in the feature covariance can be effectively used24. Other interesting
methods for extracting useful information from the feature covariance also exist; see, for example,25,26, and27.

However, to the best of our knowledge, no existing models or methods are specifically designed for high-
dimensional features with a factor structure. In the meanwhile, ample empirical experience suggests that high-
dimensional features usually demonstrate a strong factor-type covariance structure28–30. In other words, a signifi-
cant amount of feature variability can be explained by a latent factor with very low dimensions. Consequently,
the original features can be decomposed into two parts: a low-dimensional factor that accounts for a significant

OPEN

1Guanghua School of Management, Peking University, Beijing 100871, China. 2Center for Applied Statistics and
School of Statistics, Renmin University of China, Beijing 100872, China. *email: jing.zhou@ruc.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-09910-6&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:5909 | https://doi.org/10.1038/s41598-022-09910-6

www.nature.com/scientificreports/

portion of the total volatility, and a residual part with the factor effects removed. This residual part has the
same dimensions as the original feature. Consequently, the variability is significantly reduced. Moreover, the
inter-feature correlation is also substantially reduced. To this end, the original learning problem concerning the
high-dimensional features can be decomposed into two learning subproblems. The first is related to latent fac-
tors. This is relatively simple because the factor dimensions are very low. The second problem is related to the
residual feature. Unfortunately, this remains a challenging problem because of the feature’s high dimensions.
However, compared with the original problem, this modified problem is much easier to solve because the inter-
feature dependence is substantially reduced. For practical implementation, we propose here a novel method
called factor normalization. It begins with a benchmark model (e.g., AlexNet or ResNet50) and then slightly
modifies it to create a new model structure. Unlike the benchmark model, the new model takes the latent factor
and residuals as different inputs. The original structure is retained to process the residuals, and the latent factor
is then returned to the modified model in the last layer. This compensates for the information loss caused by
factor extraction. Thus, the new model allows factor-and residual-related features to be processed separately.
Furthermore, different (i.e., adaptive) learning rates can be allowed for the factor and residuals. This leads to
adaptive learning and thus a fast convergence speed.

The remainder of this article is organized as follows. Section “theoretical motivation” develops our theoretical
motivation and provides statistical insights. Section “proposed method” details the proposed model. Section
“experiments” demonstrates the outstanding performance of the proposed model through extensive empirical
experiments, and Section “conclusion” concludes the article with a brief discussion of future research. All detailed
techniques are relegated to the “Appendix”.

Theoretical motivation
We developed our new model based on several interesting theoretical motivations derived from different per-
spectives. Because the SGD algorithm is a stochastic version of the gradient descent (GD) algorithm, we focus
on the standard GD algorithm in this section for simplicity.

GD algorithm.  Let (Xi ,Yi) be the observation collected from the ith instance with 1 ≤ i ≤ N , where Yi is
often the class label and Xi = (Xi1, . . . ,Xip)

⊤ ∈ R
p is an associated p-dimensional feature. The loss function,

evaluated at i, is defined as ℓ(Yi ,X
⊤
i θ) , where θ ∈ R

p is an unknown parameter. The global loss is then given
by LN (θ) = N−1

∑N
i=1 ℓ(Yi ,X

⊤
i θ) . The global gradient is given by L̇N (θ) = N−1

∑N
i=1 ℓ̇(Yi ,X

⊤
i θ)Xi and

ℓ̇(y, z) = ∂ℓ(y, z)/∂z . Let θ̂ (t) be the estimator obtained at the tth iteration. Subsequently, the GD algorithm
updates the parameter as θ̂ (t+1) = θ̂ (t) − αL̇N (θ̂

(t)) . Here, α is a scalar referred to as the learning rate2. Assume
that LN (θ̂

(t)) reaches its minimum at θ̂ , such that L̇N (θ̂) = 0 . Subsequently, we apply the Taylor expansion for
L̇N (θ) at θ̂ . This leads to

where K = Ip − αL̈N (θ̂) . We refer to K as a contraction operator, which plays a very important role in opti-
mization. Intuitively, all the eigenvalues of K should lie within (−1, 1) . Otherwise, the algorithm might not
numerically converge.

Proposition 1  Assume L̈N (θ̂) is a positive definite matrix. Let �1 ≥ �2 ≥ · · · ≥ �p > 0 be the eigenvalues of
L̈N (θ̂) . To converge the GD algorithm, we must have 0 < α < 1/�1.

Condition number.  From Proposition 1, we know that the learning rate cannot be too large. Otherwise,
the GD algorithm may not numerically converge. The size of the learning rate is controlled by the largest eigen-
value of the Hessian matrix, L̈N (θ̂) . The larger the value of �1 , the smaller the learning rate and the slower the
convergence speed. This problem is particularly serious if the condition number (i.e., �1/�p ) of the Hessian
matrix is very large. In this case, a large �1 value forces the learning rate, α , to be very small. Meanwhile, other
small eigenvalues ( �j for j = 1 ) reduce the convergence speed along the corresponding eigendirections. Thus,
practitioners should want the condition number of the Hessian matrix to be as small as possible. However, as
mentioned previously, most high-dimensional features have a strong factor structure. In other words, the size
of the top eigenvalues of covariance matrix � is typically much larger than that of the rest. Consequently, the
condition number of the covariance matrix is typically very large. Therefore, it is of great interest to investigate
how this factor structure would affect the condition number of the Hessian matrix.

To address this important problem, we evaluate the expected Hessian matrix as
H = E(L̈ (θ)) = E{ℓ̈(Yi ,X

⊤
i θ)XiX

⊤
i } . where ℓ̈(y, z) = ∂ℓ̇(y, z)/∂z denotes the second-order derivative

of ℓ(y, z) with respect to z. For illustrative purposes: assume that Xi is normally distributed, with a mean of
zero. Recall that the covariance matrix is � , so define X̃i = �−1/2Xi and θ̃ = �1/2θ . We then rewrite H as
H = �1/2E{ℓ̈(Yi , X̃

⊤
i θ̃)X̃iX̃

⊤
i }�

1/2 = �1/2
H̃�1/2 , where H̃ = E{ℓ̈(Yi , X̃

⊤
i θ̃)X̃iX̃

⊤
i } . Let A be an arbitrary posi-

tive-definite matrix, and define �max (A) and �min (A) as the maximum and minimum eigenvalues of A, respec-
tively. We then have �max (H) ≥ �max (�)�min (H̃) and �min (H) ≤ �min (�)�max (H̃) . This further suggests
that the condition number of H (i.e., con(H) = �max (H)/�min (H) ) satisfies the following inequality:

θ̂ (t+1) − θ̂ =
{
Ip − αL̈N (θ̂)

}
(θ̂ (t) − θ̂)+ o(�θ̂ (t) − θ̂�2)

=K(θ̂ (t) − θ̂)+ o(�θ̂ (t) − θ̂�2),

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:5909 | https://doi.org/10.1038/s41598-022-09910-6

www.nature.com/scientificreports/

where con(A) stands for the condition number of an arbitrary positive-definite matrix. Note that H̃ is the expected
Hessian matrix under an extremely ideal situation, where the input feature follows a standard multivariate normal
distribution. This is arguably the ideal situation for numerical optimization. Thus, we can reasonably expect that
con(H̃) will not be very large in this case. Moreover, from (1), we know that con(�) should play an important
role in determining con(H) . That is, the condition number of � is affected by con(H) . This makes numerical
optimization by a standard GD algorithm extremely difficult and thus calls for a novel solution.

Factor linear subspace.  To further explain the motivation behind the proposed method, we
provide a theoretical justification from a different perspective. Assume a standard factor model as
Xi = BZi + Ei , where Zi ∈ R

d is a vector with low dimensionality (i.e., d ≪ p ) and B ∈ R
p×d is the cor-

responding factor loading matrix with d ≪ p . Consider the general loss function L (θ) , and recall that
the global gradient is L̇N (θ) = N−1

∑N
i=1 ℓ̇(Yi ,X

⊤
i θ)Xi . We then have L̇N (θ) = Q1 + Q2 , where

Q1 = BN−1
∑N

i=1 ℓ̇(Yi ,X
⊤
i θ)Zi ∈ S (B) , Q2 = N−1

∑N
i=1 ℓ̇(Yi ,X

⊤
i θ)εi , and S (B) denotes the linear sub-

space spanned by the column vectors of B. The covariance structure of the global gradient can then be writ-
ten as cov{L̇N (θ)} = cov(Q1)+ cov(Q2), where cov(Q1) = B�zB

⊤/N , �z = cov{L̇ (Yi ,X
⊤
i θ)Zi} ∈ R

d×d ,
cov(Q2) = �ε/N , and �ε = cov{L̇ (Yi ,X

⊤
i θ)εi} ∈ R

d×d . It is then of interest to study the relative sizes of
cov(Q1) and cov(Q2) under appropriate metrics.

Proposition 2  Assume there exists constant 0 < τmin < τmax < ∞ , such that τmin < �min(�z) ≤ �max(�z) < τmax
and τmin < �min(�ε) ≤ �max(�ε) < τmax . Furthermore, assume that �min(B

⊤B/p) > τmin . We then have
tr{cov(Q1)}/tr{cov(Q2)} ≥ τ 2min/τmax.

For most DNN models, the parameter dimension, p, is very high. This makes the model structure sufficiently
flexible. Accordingly, one might expect the associated GD (or SGD) algorithm should search the entire high-
dimensional parameter space (e.g., Rp ) in a very flexible way. However, the above proposition indicates that the
estimated gradient direction is not as flexible as we might expect. In contrast, it always has a significant portion
(i.e., Q1 ) trapped in a very low-dimensional linear subspace, S (B) . This brings a positive effect. Because the
linear subspace, S (B) , has a very low dimension (i.e., d), the overfitting effect caused by to Q1 becomes neg-
ligible. However, this positive effect also comes at a convergence cost. By trapping a significant portion of the
gradient direction in S (B) , the ability of a GD algorithm to explore directions other than S (B) is considerably
sacrificed. This problem can be solved if the directions of the factor (i.e., Q1 ) and the residual features (i.e., Q2 )
can be treated separately. This is another important theoretical insight that drove us to develop our new model.

Proposed method
Inspired by the theoretical findings discussed in the previous section, we propose a factor normalization method.
This new method is specifically designed for deep models with high-dimensional features and factor structures.
It begins with an important benchmark model (e.g., AlexNet or ResNet50), and can be implemented in three
steps: factor decomposition, model reconstruction, and adaptive learning. The details of which are discussed in
the following subsections.

Factor decomposition.  In the first step, we conduct a standard singular value decomposition for the high-
dimensional features. By doing so, a low-dimensional factor can be estimated. Accordingly, the original fea-
tures can be decomposed into two parts. The first is related to the factor and is referred to as the factor part.
The second comprises the original features, but the factor effects are removed. This part is referred to as the
residual part (or residual feature). Specifically, during the training process, we assume that the centralized input
matrix is written as X = (X1 . . . ,XN0)

⊤ ∈ R
N0×p , with n = min(N0, p) , such that the column mean of X is 0. We

then conduct a singular value decomposition as X = U�V⊤ =
∑n

i=1 �iuiv
⊤
i  , where U = (u1 . . . , un) ∈ R

N0×n
and V = (v1, vn) ∈ R

p×n , with U⊤U = V⊤V = In and In ∈ R
n×n representing the identity matrix. Moreover,

� = diag(�1 . . . , �n) is a diagonal matrix, with �1 ≥ �2 ≥ · · · ≥ �n ≥ 0 . We define Vd = (v1 . . . , vd) as a trun-
cated orthogonal matrix that collects the top d singular vectors of V. Then, the latent factors can be estimated as
Ẑ = XVd , where Ẑ ∈ R

N0×d denotes the estimated factor part. Finally, we use linear regression to estimate the
residual feature matrix as Ê = X − ẐB̂ , where B̂ = (Ẑ⊤Ẑ)−1Ẑ⊤X ∈ R

d×p denotes the estimated factor-loading
matrix. Thus, the original feature matrix, X, is decomposed into two parts: the factor part, Ẑ , and the residual
part, Ê . For the testing process, we first use the column mean calculated from the training data to centralize the
testing data. We assume that the centralized testing input matrix is written as X̃ = (X̃1 . . . , X̃N1)

⊤ ∈ R
N1×p .

Then, we use the singular vectors, Vd , and regression coefficients, B̂ , calculated from the training data to decom-
pose the testing data into factor part Z̃ and residual part Ẽ as Z̃ = X̃Vd and Ẽ = X̃ − Z̃B̂.

Model reconstruction.  In the second step, we modify a given benchmark model (e.g., ResNet50) into a
new model for better performance. More specifically, consider a standard DNN model with (1) an input layer
with original feature X; (2) an output layer, which often has a dense structure; and (3) sophisticated latent lay-
ers between the input and output layers. We then replace the original feature of the input layer (i.e., X) with the
residual feature (i.e., Ê ). Next, the residual feature is fully processed by sophisticated latent layers until it reaches
the output layer. Before the DNN model constructs the last dense layer, we return the estimated latent factor (i.e.,
Ẑ ) to the output layer to compensate for the information loss due to factor extraction.

(1)con(H) ≥ con(�)/con(H̃),

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:5909 | https://doi.org/10.1038/s41598-022-09910-6

www.nature.com/scientificreports/

This leads to a new model structure with two interesting characteristics. The high-dimensional residual
term is still processed using a sophisticated benchmark model. However, the low-dimensional latent factor is
not processed in the same manner. This interesting structure is particularly desirable for the following reasons.
First, in most cases, we find that a one-dimensional factor is already sufficient. In this case, the latent factor is
univariate. As such, any nonlinear transformation (e.g., from using a DNN) should be only minimally different
from the original factor in terms of the information contained. Thus, there is little need for further sophisticated
nonlinear transformation of the univariate latent factor. In contrast, the residual form remains high dimensional.
However, sophisticated nonlinear transformation is still very useful for high-quality feature extraction. Second,
to achieve adaptive learning, and thus better performance, we want to use different learning rates for the factor
and residuals. If the factor is placed in an intermediate layer, the practical implementation of adaptive learn-
ing using TensorFlow programming could be extremely and unnecessarily complicated. This explains why the
latent factor is set as the input for the last layer. Figure 1 provides a more intuitive visual explanation of the new
model structure.

Adaptive learning.  As previously discussed , with this modified model, the convergence speed remains
very slow if we adopt a standard SGD algorithm. For a reliable convergence, a smaller learning rate should be
used for the parameters associated with the factor because the factor variability is large. In contrast, much larger
learning rates should be used for the parameters associated with the residual features. Otherwise, their limited
variability could cause the convergence speed to be very slow. This suggests that adaptive (i.e., different) learn-
ing rates should be used for the factor and residuals. Assume that the learning rate used in a standard SGD is
α . Recall that in Subsection 3.1, we assume that �j is the j-th largest singular value calculated on training input
matrix X. Then, the factor-associated learning rate is set as αj = α�21/�

2
j for j = 1 . . . , d . In contrast, the residual-

associated learning rate is set the same as αε = α�21/�
2
d+1 . Consequently, the learning rates used for the latent

factor become much smaller than those of the residual features. It should be noted that the adaptive learning
rates used here are different from those used by AdaGrad or Adam9,12. The AdaGrad and Adam methods adjust
their learning rates dynamically for each iteration and adaptively for each dimension during the training process.

Experiments
To empirically demonstrate the proposed factor normalization (FN) model, we conducted various experiments
using different models, including logistic regression, multilayer fully connected neural networks, and deep con-
volutional neural networks. The experiments were run on a Tesla P100 GPU with 16 GB memory.

Logistic regression.  We begin with a simple logistic regression (LR) model and evaluate the proposed
model using the MNIST dataset. This is a classification task with ten classes, 60,000 instances for training, and
10,000 instances for testing. The input feature is a 28× 28 pixel matrix. To implement the logistic regression, we
reshape the input feature into a 784-dimensional vector. Subsequently, FN models with various factor dimen-
sions ( d = 1, 2, 10 ) are used to reconstruct the baseline model. The SGD optimizer is used to optimize both the

Figure 1.   Graphic illustration of model reconstruction for factor normalization. The rectangles represent the
DNN feature maps. The blue dashed rectangle represents the latent layers between the input and the last dense
layer. The left panel shows the original DNN structure with the original input feature. The right panel shows the
modified DNN structure with factor and residual features. As can be seen, the factor and residual features are
treated separately. The latent factor is reinserted back into the model before the last dense output layer.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:5909 | https://doi.org/10.1038/s41598-022-09910-6

www.nature.com/scientificreports/

baseline and FN models. Detailed results are presented in Fig. 2. For comparison purposes, all models are trained
for many epochs so that their performance on the testing data is fully converged. Specifically, a batch size of 200
with 200 epochs is adopted and we use constant learning rate 0.05 during training process. The left panel of Fig. 2
shows the training loss for the various models. We find that the FN models consistently outperform their bench-
mark counterparts, because the loss curves in the FN models are always below the baseline model. The right
panel of Fig. 2 shows the accuracy of the results. We can see that the accuracy curves of the FN models reach
a plateau earlier than the baseline model. Additionally, there appears to be little difference in the performance
of the FN models with different factor dimensions d. Therefore, we fix d = 1 for the subsequent experiments.

Multilayer neural networks.  Next, we consider a more complicated multilayer neural network model.
The proposed model has two fully connected hidden layers with 1,000 neurons. Rectified linear unit (ReLU)
transformation is used in each hidden layer for activation12. The settings of the experiment are almost the same
as those in Subsection 4.1, except for the following differences. First, we only consider the FN model in which
d = 1 . Second, for a comprehensive comparison, we consider four different optimizers: SGD, NAG, AdaGrad,
and Adam. This results in four groups of comparative experiments. Here, the baseline model is an original
DNN model with a specific optimization method. It is compared to an FN model, which is reconstructed from
the same original model using the same optimization setting. Furthermore, we train all models for a total of 50
epochs. For each optimizer, the initial learning rate is chosen by grid search and decays by 0.2 after 20 epochs.
The detailed results are presented in Fig. 3.

The top panel of Fig. 3 shows the training loss, in log scale, for the four optimization methods on the baseline
and FN models. We find that for each optimizer, the FN model always achieves a smaller training loss than the
baseline model. This difference is more obvious in the cases of SGD, NAG, and AdaGrad. The bottom panel of
Fig. 3 reports the prediction accuracy of the testing dataset. We find that for each optimizer, the accuracy of the
FN model is higher than that of the baseline model.

Convolutional neural networks.  Convolutional neural networks (CNNs) are the most popular models
used in image classification and object detection tasks. The main difference between CNNs and multilayer neural
networks is that CNNs contain many convolutional and pooling layers, which provide efficient feature extrac-
tion and lead to excellent prediction performance. However, CNNs typically have complicated model structures
with a large number of parameters. Here, we consider two classical CNN models: AlexNet31 and ResNet5032. It
should be noted that the CNN model considered here typically has a a fully connected layer at the end. This is
because the proposed FN model always adds the factors to the last dense layer. The datasets used in this study are
CIFAR1033 and CatDog released by Kaggle in 2013.

Similar to the experiment described in Subsection 4.2, we evaluate four different optimizers: SGD2, NAG34,
AdaGrad9, and Adam12. For the AlexNet experiments on the CIFAR10 dataset, we train the model for a total
of 150 epochs, and the batch size is set to 128. The learning rate for each optimizer is selected by a grid search,
and decays by 0.2 at the 50th and 100th epochs. For the ResNet50 experiments on the CatDog dataset, we train
the model for 200 epochs, and the batch size is set to 128. Similarly, the initial learning rates are determined
by a grid search, and decay by 0.2 at the 90th and 150th epochs. To achieve stable performance, we repeat each
experiment ten times. Then, we draw the loss/accuracy curves for both the FN and the baseline models using
median statistics. For illustration, we summarize the results of AlexNet on CIFAR10 and ResNet50 on CatDog
in Figs. 4 and 5, respectively.

From these figures, we find that the FN models have a relatively lower loss than the baseline models during
training. Furthermore, compared to the baseline models, the FN models reach the same prediction accuracy level
in fewer epochs. In addition, the final prediction accuracy of the FN models on the testing set is slightly higher
(approximately 1–2%) than that of the baseline models. Consequently, the time required for the FN models to

Figure 2.   LR stands for logistic regression and FN stands for factor normalization. The left panel shows the
training loss of the logistic regression model and FN model optimized by SGD on MNIST images. The right
panel shows the prediction accuracy on the testing dataset. Different numbers of factors are considered (i.e.,
d = 1, 2, 10).

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:5909 | https://doi.org/10.1038/s41598-022-09910-6

www.nature.com/scientificreports/

reach optimal baseline prediction accuracy is less than that required by the baseline models. It is worth noting
that the time required to conduct SVD in the FN model is preprocessed before training, which is significantly less
than the training cost. In summary, we found that the FN model can improve the performance of the baseline
model in terms of time cost, training loss, and prediction accuracy. Similar conclusions can be drawn from the
results for ResNet50 on CatDog in Fig. 5.

Figure 3.   Here, the top panel is the training loss in log scale for the baseline model (blue dash line) and FN
model (red solid line) with four different optimizers. The bottom panel shows the testing accuracy for the
baseline model (blue dashed line) and the FN model (red solid line) with different optimizers.

Figure 4.   Results of training AlexNet on the CIFAR10 dataset. The top panel shows the training loss of the
baseline (blue dashed line) and FN models (red solid line) with four different optimizers. The bottom panel
shows the testing accuracy of the baseline (blue dashed line) and FN models (red solid line) with different
optimizers. The curves represent the median training loss and testing accuracy of the ten repeated experiments.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:5909 | https://doi.org/10.1038/s41598-022-09910-6

www.nature.com/scientificreports/

Conclusion
In this paper, we propose a novel factor normalization method for fast DNN training. This concept was inspired
by the fact that many DNN models involve high-dimensional features, and these features often exhibit a strong
factor structure. The proposed method has three key components. First, it decomposes high-dimensional input
features into two parts: a factor part with low dimensionality and a residual part. Second, it slightly modifies a
given DNN model so that the effects of the latent factor and residual features can be processed separately. Last,
to train a modified DNN model, a new SGD algorithm is developed. This allows for adaptive learning rates for
the factor and residual parts.

To conclude this article, we present here a number of interesting topics for future study. First, our current FN
model performs factor decomposition on the input features. Even if different components of the input feature are
completely independent of each other, the resulting feature map after multiple convolutional layers might still
have a strong factor structure. Therefore, it is worth studying whether factor decomposition should be conducted
for feature maps. Second, the current FN model does not insert the estimated factors back into the DNN models
until the last layer. As such, determining what happens if the estimated factors are inserted into earlier layers is
another problem of great interest.

Received: 25 September 2021; Accepted: 29 March 2022

References
	 1.	 Sun, S., Cao, Z., Zhu, H. & Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern.

(2019).
	 2.	 Robbins, H. & Monro, S. A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951).
	 3.	 Jain, P., Netrapalli, P., Kakade, S. M., Kidambi, R. & Sidford, A. Parallelizing stochastic gradient descent for least squares regression:

Mini-batching, averaging, and model misspecification. J. Mach. Learn. Res. 18, 1–42 (2018).
	 4.	 Johnson, R. & Zhang, T. Accelerating stochastic gradient descent using predictive variance reduction. News Physiol. Ences 1,

315–323 (2013).
	 5.	 Polyak, B. T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4, 1–17 (1964).
	 6.	 Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 12, 145–151 (1999).
	 7.	 Nesterov, Y. E. A method for solving the convex programming problem with convergence rate o(1/k2). Dokl.Akad.Nauk SSSR 269

(1983).
	 8.	 Sutskever, I., Martens, J., Dahl, G. & Hinton, G. On the importance of initialization and momentum in deep learning. In 30th

International Conference on Machine Learning, ICML 2013 1139–1147 (2013).
	 9.	 Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn.

Res. 12, 257–269 (2011).
	10.	 Zeiler, M. D. Adadelta: An adaptive learning rate method. Comput. Sci. (2012).
	11.	 Tieleman, T. & Hinton, G. Lecture 6e rmsprop: Divide the Gradient by a Running Average of its Recent Magnitude (Neural networks

for machine learning, COURSERA, 2012).
	12.	 Kingma, D. P. & Ba, J. A method for stochastic optimization. Comput. Sci. (2014).

Figure 5.   Results of training ResNet50 on CatDog dataset. The top panel shows the training loss of the baseline
(blue dashed line) and FN models (red solid line) with four different optimizers. The bottom panel shows the
testing accuracy of the baseline (blue dashed line) and FN models (red solid line) with different optimizers. The
curves represent the median training loss and testing accuracy of ten repeated experiments.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:5909 | https://doi.org/10.1038/s41598-022-09910-6

www.nature.com/scientificreports/

	13.	 Roux, N. L., Schmidt, M. & Bach, F. A stochastic gradient method with an exponential convergence rate for finite training sets. In
International Conference on Neural Information Processing Systems (2012).

	14.	 Shanno, D. F. Conditioning of quasi-newton methods for function minimization. Math. Comput. (1970).
	15.	 Pajarinen, J., Hong, L. T., Akrour, R., Peters, J. & Neumann, G. Compatible natural gradient policy search (2019).
	16.	 Avriel, M. Nonlinear Programming: Analysis and Methods (Dover Publications, 2003).
	17.	 Luo, H., Haffner, P. & Paiement, J. F. Accelerated parallel optimization methods for large scale machine learning. Comput. Sci.

(2014).
	18.	 Davidon, W. C. Variable metric method for minimization. SIAM J. Optim. (1991).
	19.	 Fletcher & R. A new approach to variable metric algorithms. Comput. J. 13, 317–322 (1970).
	20.	 Donald & Goldfarb. A family of variable-metric methods derived by variational means. Math. Comput. (1970).
	21.	 Nocedal & Jorge. Updating quasi-newton matrices with limited storage. Math. Comput. 35, 773 (1980).
	22.	 Benzi, M. Preconditioning techniques for large linear systems: A survey. J. Comput. Phys. 182, 418–477 (2002).
	23.	 Higham, N. J. & Mary, T. A new preconditioner that exploits low-rank approximations to factorization error. SIAM J. Sci. Comput.

41, A59–A82 (2019).
	24.	 Wang, Y. et al. Deep factors for forecasting. Sci. Rep. 1905, 12417 (2019).
	25.	 Denton, E. L., Chintala, S., szlam, a. & Fergus, R. Deep generative image models using a laplacian pyramid of adversarial networks.

In Advances in Neural Information Processing Systems, vol. 28, 1486–1494 (Curran Associates, Inc., 2015).
	26.	 Ghiasi, G. & Fowlkes, C. C. Laplacian Reconstruction and Refinement for Semantic Segmentation. (Springer, 2020).
	27.	 Lai, W. S., Huang, J. B., Ahuja, N. & Yang, M. H. Deep laplacian pyramid networks for fast and accurate super-resolution. In IEEE

Conference on Computer Vision and Pattern Recognition, 5835–5843 (2017).
	28.	 Wang, H. Factor profiled sure independence screening. Biometrika 99, 15–28 (2012).
	29.	 Carvalho, C. M. et al. High-dimensional sparse factor modeling: Applications in gene expression genomics. J. Am. Stat. Assoc. 103,

1438–1456 (2008).
	30.	 Turkay, C., Lundervold, A., Lundervold, A. J. & Hauser, H. Representative factor generation for the interactive visual analysis of

high-dimensional data. IEEE Trans. Visualization Comput. Gr. 18, 2621–2630 (2012).
	31.	 Krizhevsky, A., Sutskever, I. & Hinton, G. Imagenet classification with deep convolutional neural networks. Adv. Neural Inform.

Process. Syst. 25 (2012).
	32.	 He, K., Zhang, X., Ren, S. & Jian, S. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (2016).
	33.	 Krizhevsky, A. & Hinton, G. Learning multiple layers of features from tiny images. Handbook of Syst. Autoimmune Dis. 1 (2009).
	34.	 Bengio, Y., Boulanger-Lewandowski, N. & Pascanu, R. Advances in optimizing recurrent networks. In IEEE International Confer-

ence on Acoustics (2013).

Acknowledgements
Jing Zhou’s research is supported in part by the National Natural Science Foundation of China (No. 72171226,
11971504), the Beijing Municipal Social Science Foundation (No.19GLC052), and the National Statistical Science
Research Project (No. 2020LZ38). Hansheng Wang’s research is partially supported by the National Natural Sci-
ence Foundation of China (No. 11831008) and the Open Research Fund of Key Laboratory of Advanced Theory
and Application in Statistics and Data Science (KLATASDS-MOE-ECNU-KLATASDS2101).

Author contributions
H.W. and J.Z. conceived the experiment(s), H.Q. conducted the experiment(s) and analysed the results. All
authors wrote the main manuscript text and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​09910-6.

Correspondence and requests for materials should be addressed to J.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-09910-6
https://doi.org/10.1038/s41598-022-09910-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A note on factor normalization for deep neural network models
	Theoretical motivation
	GD algorithm.
	Condition number.
	Factor linear subspace.

	Proposed method
	Factor decomposition.
	Model reconstruction.
	Adaptive learning.

	Experiments
	Logistic regression.
	Multilayer neural networks.
	Convolutional neural networks.

	Conclusion
	References
	Acknowledgements

