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Missing data are a common problem that researchers face in practice. In this article,

we focus on the missing response problem for a spatial dynamic panel data (SDPD)

model, which allows for both spatial and temporal dependencies. A logistic regression

with a set of prespecified covariates is used to model the missingness mechanism,

which is assumed to be missing at random (MAR). A weighted maximum likelihood

estimator (WMLE) is proposed for parameter estimation in the presence of incom-

plete data. The associated asymptotic properties are investigated. Thereafter, we

develop a novel imputation method, which makes use of the information from spatial

dependence, temporal dependence and exogenous regression covariates. Lastly, the

performance of WMLE and the proposed imputation method are demonstrated by

both simulation studies and a real data example.
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1 | INTRODUCTION

This research is motivated by a real application. China Engineering Cost Network (CECN, https://www.cecn.org.cn/) is a state-owned institute

responsible for collecting price information for various construction materials, for example, price index compiling, references for price setting of mate-

rials and salary setting of employee. As a consequence, CECN needs to compile and publish price indices in a monthly manner. To this end, CECN col-

lects price information for various building materials at different locations and time points. However, due to many practical reasons, the collected

price information is seldom complete. For example, the missing rate of price information in the proposed CECN dataset is around 25%. This becomes

a serious challenge for price index compiling. Therefore, how to handle these incomplete price information becomes a problem of great interest.

It is remarkable that the price information is collected by CECN at regular time points and from a fixed set of locations. This leads to a dataset

of spatial panel structure. To conduct appropriate modelling approach for this kind of data, two types of dependencies should be considered. The

first type is spatial dependence, which means the price collected from neighbouring locations, should be correlated. The second type is temporal

dependence; that is, the current price value should be correlated with the historical ones. Then, how to develop a model allowing for both spatial

and temporal dependencies becomes a problem of great importance.
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There has been a large body of literature dealing with the above two types of dependencies. For temporal dependence, time series models have

been developed (Brockwell & Davis, 1991; Fuller, 1996). For spatial dependence, spatial autoregressive (SAR) models have been widely adopted

(Anselin, 1980; Lee et al., 2013; Ord, 1975). To allow for both spatial and temporal dependencies, Yu et al. (2008) proposed a spatial dynamic panel

data (SDPD) model and suggested a quasi-maximum likelihood method for estimation. Later on, Lee and Yu (2014) developed a generalized method

of moments (GMM) for estimating a SDPD model with multiple spatial lags. Li (2017) further extended the model to allow for multiple spatial time

lags. Su and Yang (2015) proposed the Quasi Maximum Likelihood Estimator for dynamic panel models with spatial errors and random/fixed effects.

Yang (2018) studied the SDPD models with spatial error. Li and Yang (2021) developed SDPD models with correlated random effects. Feng et al.

(2022) considered spatial–temporal model with heterogeneous random effects. More discussions on models with both spatial and temporal depen-

dencies can be found in the above studies and the references therein. It is noteworthy that all these pioneered researches are conducted based on

complete datasets. The problem of missing data seems not well studied, and no imputation method has been developed.

However, as we point out in the beginning, missing data are a common issue in practice. This is particularly true for SDPD as we can see in

the CECN case. So it is necessary to develop statistical methods to handle this challenge. Typically, there are three types of assumptions about

the missingness mechanism (Rubin, 1976). They are missing completely at random (MCAR), missing at random (MAR) and nonignorable missing (NM);

see Little and Rubin (2002) for a more detailed discussion. Under a regression setup with observed covariates and incomplete responses, MCAR

implies that the missingness is completely independent of both covariates and responses. In contrast, MAR means that the missingness could

depend on the observed covariates. However, conditional on the observed covariates, the missingness should be independent of the responses.

Lastly, NM suggests that the missingness depends on the responses even after controlling for the covariate effect. It is remarkable that MCAR is

an assumption too restrictive to hold in many practical applications. On the other hand, NM is an assumption often leading to identification issue.

This makes MAR an assumption widely used for statistical research. Accordingly, MAR is adopted throughout the rest of this article (Rao &

Shao, 1992; Rubin, 1987; Sun & Wang, 2020).

Under the MAR assumption, estimators based on complete data might lead to seriously biassed results (Nakai & Ke, 2011; Shao & Wang, 2002).

To solve this problem, various modelling and imputation methods have been developed for missing data. For example, Shao and Wang (2002) inves-

tigated a sample correlation coefficients-based regression method. Semiparametric of this type was also developed (Liang et al., 2007; Wang &

Dai, 2008; Wang et al., 2004, 2016; Zhao & Tang, 2016). For other more details, see Little and Rubin (2002) for an excellent overview. Despite of

their usefulness, most of the existing estimation and imputation methods are developed for independent data (Schafer, 1997; Qin et al., 2008; Miao

et al., 2016). Recently, a few researchers show interests in exploring estimation methods with either spatial or temporal correlation. Rahman et al.

(2015) proposed an estimation method in time series using lagged correlation. Wang and Lee (2013a) used three methods to estimate a SAR model

with incomplete responses. Sun and Wang (2020) proposed an estimation and imputation method for a SAR model. Zhou et al. (2022) developed an

autoregressive model with SAR error for missing data without covariates. It seems to us no estimation method exists for spatial panel data so that

both spatial and temporal dependencies, together with exogenous covariates, can be accommodated simultaneously.

The model developed in this work for missing data makes full use of both spatial and temporal dependencies, together with exogenous

covariates. Specifically, we borrowed the classical SDPD model of Yu et al. (2008) as our model foundation. This model allows cross-sectional spa-

tial dependence by a SAR structure. It accommodates temporal dependence by a vector autoregressive (VAR) component. It also considers the

exogenous covariate effects by a linear regression model. To reflect the missingness mechanism, a logistic regression model is used. Since we

adopt the MAR assumption, the model allows the exogenous covariates to be correlated with missing probability. Throughout the rest of this arti-

cle, we assume that these covariates are fully observed and complete. To estimate the unknown parameters, a novel weighted log-likelihood func-

tion is developed, and this leads to a weighted maximum likelihood estimator (WMLE). Under appropriate regularity conditions, we show

theoretically that WMLE is consistent and asymptotically normal. With the help of WMLE, a novel imputation method is developed. The imputed

values take both the spatial and temporal dependencies into consideration, together with the exogenous covariate effects. This leads to much

improved imputation results. Accordingly, the missing price in the CECN dataset can be appropriately imputed. As a result, a principled construc-

tion material price index can be compiled.

The rest of this article is organized as follows. Section 2 introduces the model and notations. The WMLE is also developed, and its asymptotic

properties are studied. A novel imputation method is proposed in this section. Section 3 demonstrates numerical studies, including simulation

experiments and a real data example. Lastly, the article is concluded with a brief discussion in Section 4. All technical details are relegated in the

supporting information Appendix.

2 | MODEL AND METHODOLOGY

2.1 | Model and notations

Let Yit �ℝ1 be a continuous response collected from the ith (1≤ i≤N) location at time point t (1≤ t≤ T). To model Yit, we adopt a SDPD model

from Yu et al. (2008) as follows:
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Yt ¼ λWYtþ γYt�1þρWYt�1þXtβþEt, ð1Þ

where Yt ¼ðY1t,…,YNtÞ > �ℝN is the response vector collected at time point t and Xt ¼ðX >
1t ,…,X >

Nt Þ
>
�ℝN�p is the associated covariate matrix.

Here, Xit ¼ðXit1,…,XitpÞ > is a p-dimensional exogenous covariate. The matrix W �ℝN�N is a row normalized weight matrix, which is used to cap-

ture the spatial dependence among different locations. For example, assume that there exists an adjacency matrix as A¼ðaijÞ�ℝN�N, where aij ¼
1 if location i is bordered with location j and aij ¼0 otherwise. Then W¼ðwijÞ�ℝN�N can be defined as wij ¼ aij=di , where di ¼

PN
j¼1aij is the total

number of locations that i is bordered with. Lastly, Et ¼ðε1t,…,εNtÞ > �ℝN is residual vector, which is assumed to follow a multivariate normal dis-

tribution with mean 0 and covariance matrix σ2I�ℝN�N. Here, I stands for an identity matrix with an appropriate dimension.

Write S¼ I�λW. Then by Lee (2004), we know that S is always invertible as long as jλj<1. Thus, throughout the rest of this article, we

assume that jλj< 1. Define M¼ S�1ðγIþρWÞ. Then, model (1) can be rewritten as follows:

Yt ¼MYt�1þS�1XtβþS�1Et: ð2Þ

In practice, the response Yit could be incomplete. We then use a binary indicator Zit � f0,1g to indicate whether Yit is observed or not. Specif-

ically, define Zit ¼1 if Yit is observed and define Zit ¼0 otherwise. Next, assume

PðZit ¼1jFÞ¼ pit ¼
expðς > XitÞ

1þ expðς > XitÞ , ð3Þ

where F is the σ-field generated by fðYit,XitÞ :1≤ t≤ T,1≤ i≤Ng and ς¼ðς1,…,ςpÞ > �ℝp is the associated regression coefficient vector. By

model (3), it suggests that a MAR missingness mechanism is adopted. This is because conditional on the observed covariates Xit, the missingness

of response Yit is independent of the response Yit itself. It is also worth noting that the exogenous covariates in (3) could be different from those

in model (1). They may contain the variables on regions or time.

2.2 | Weighted maximum likelihood

We next consider how to estimate the parameters in model (1). Define θ¼ðδ > ,λ,σ2Þ > �ℝpþ4, where δ¼ðγ,ρ,β > Þ > �ℝpþ2. Recall that Et is

assumed to follow a multivariate normal distribution with mean 0 and covariance σ2I. Then, by model (2), we have the following full data log-

likelihood function (omitting some constants),

ℓ1ðθÞ¼ ðT�1Þlog Sj j�NðT�1Þ
2

logðσ2Þ� 1
2σ2

XT
t¼2

E >
t Et, ð4Þ

where S¼ I�λW and Et ¼ SYt� γYt�1�ρWYt�1�Xtβ¼ ~Yt� ~Xtδ. Here, ~Xt ¼ SYt �ℝN, ~Xt ¼ðYt�1,WYt�1,XtÞ�ℝN�ðpþ2Þ.

Next, consider how to handle incomplete observations. Note that EðZitZiðt�1ÞjFÞ¼ pitpiðt�1Þ. This suggests that different weights

(e.g. pit,piðt�1Þ) are expected for different sample pairs (Yit,Yiðt�1Þ). In other words, each sample pair is no longer treated equally in the estimation

process. This might make θ less efficient (Zhou et al., 2022). This inspires us to consider the following weighted log-likelihood function as follows:

ℓ2ðθÞ¼ ðT�1Þlog Sj j�NðT�1Þ
2

logðσ2Þ� 1
2σ2

XT
t¼2

XN
i¼1

ZitZiðt�1Þ
pitpiðt�1Þ

ε2it: ð5Þ

One can easily verify that Efℓ2ðθÞjFg¼ℓ1ðθÞ. This suggests that the weighted log-likelihood function (5) is an unbiassed estimator for the full

data log-likelihood function (4). Accordingly, it might lead to a sensible estimator for θ.

Nevertheless, the weighted log-likelihood function (5) cannot be directly used for parameter estimation. This is because pits are unknown

parameters. To fix the problem, we can replace pit by its consistent estimator p̂it ¼fexpðς̂ > XitÞg=f1þ expðς̂ > XitÞg, where ς̂ is maximum likelihood

estimator from the logistic regression model (3). This leads to the following practically feasible weighted log-likelihood function as

ℓ3ðθÞ¼ ðT�1Þlog Sj j�NðT�1Þ
2

logðσ2Þ� 1
2σ2

XT
t¼2

XN
i¼1

ZitZiðt�1Þ
p̂itp̂iðt�1Þ

ε2it: ð6Þ

Then, a feasible WMLE can be obtained as θ̂¼ argmaxθℓ3ðθÞ. Its asymptotic properties are to be carefully studied in the following

subsection.
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2.3 | Theoretical results

We first introduce some notations. For an arbitrary N�N matrix C¼ðcijÞ�ℝN�N, define kCk∞ ¼ max1≤ i≤N
PN

j¼1jcijj, kCk1 ¼ max1≤ j≤N
PN

i¼1jcijj,
and absðCÞ¼ ðjcijjÞ�ℝN�N. Denote G¼WS�1 ¼ðGijÞ�ℝN�N, Pt ¼diagfpitpiðt�1Þg�ℝN�N. Moreover, define ΔNT ¼ ½ΔNT,11,ΔNT,12,0;Δ >

NT,12,ΔNT,22,

ΔNT,23;0,Δ>
NT,23,ΔNT,33��ℝðpþ4Þ�ðpþ4Þ, where

ΔNT,11 ¼ 1
NT

1
σ2

XT
t¼2

~X >
t P�1

t
~Xt, ΔNT,12 ¼� 1

NT
1
σ2

XT
t¼2

~X >
t P�1

t ðG~XtδÞ,

ΔNT,22 ¼ΔNT,22,1þΔNT,22,2, ΔNT,22,1 ¼ 1
NT

1
σ2

XT
t¼2

ðG~XtδÞ > P�1
t ðG~XtδÞ,

ΔNT,22,2 ¼ 1
NT

XT
t¼2

2
XN
i¼1

G2
ii ðp�1

it p�1
iðt�1Þ �1Þþ trðGG > P�1

t Þþ trðG2Þ
( )

,

ΔNT,23 ¼ 1
NT

1
2σ2

XT
t¼2

3trðGP�1
t Þ� trðGÞ� �

,ΔNT,33 ¼ 1
4NTσ4

XT
t¼2

3trðP�1
t Þ�N

� �
:

To investigate the asymptotic properties of the proposed WMLE of θ, we consider the following technical conditions.

(C1) (WEIGHT MATRIX) The spatial weight matrix W satisfies that kWk∞ <∞.

(C2) (SPATIAL DEPENDENCE) Assume λ� ð�1,1Þ. In addition, assume M¼P∞
k¼1absðMkÞ exists and satisfies that kMk∞ <∞ and kMk1 <∞.

(C3) (LAW OF LARGE NUMBER) There exists a positive definite matrix Δ, which satisfies that ΔNT!pΔ as minfN,Tg!∞.

These conditions are commonly used in literature. Condition (C1) is a standard assumption in SAR literature (Yu et al., 2008; Wang &

Lee, 2013a, 2013b). Condition (C2) is an assumption on the absolute summability of M and its power. This controls the dependence between time

series and between cross-sectional locations. It is trivially satisfied if γ¼ ρ¼0. More detailed discussion can be found in Yu et al. (2008) and Li

(2017). Condition (C3) is a law of large number type assumption. To guarantee the positive definiteness of Δ, it is worth noting that the missing

rate should not be too large. It is trivially satisfied if there is no missing data, such as, Pt ¼ I. As a result, we can obtain the associated positive

matrix Λ. In this case, similar assumption can be found in Theorem 3 of Yu et al. (2008). With the help of above conditions, we then have the fol-

lowing theorem.

Theorem 1. Assume conditions (C1)–(C3) as given above. Further assume that minfN,Tg!∞, we then haveffiffiffiffiffiffiffi
NT

p
θ̂�θ
� �!dN 0,Λ�1ΔΛ�1

� �
, where Λ is a special case of Δ when all pits are fixed to be 1, that is, Pt ¼ I.

The proof of Theorem 1 is given in the supporting information Appendix B. This theorem establishes the consistency and asymptotic normal-

ity of the WMLE of θ̂. It is worth noting that the convergence rate also depends on the missing rate, which is included in Δ. As for a valid statistical

inference, we can consistently estimate Δ by Δ̂NT , which is obtained by replacing θ and pit in ΔNT by θ̂ and p̂it , respectively. We can also consis-

tently estimate Λ by Λ̂¼ Λ̂NT . In this case, all of p̂it in Δ̂NT are 1.

2.4 | Imputation method

With the estimated θ̂, we next consider how to conduct imputation for Yt. For simplicity, denote Yt ¼ðYð1Þ
t ,Yð2Þ

t Þ > , where Yð1Þ
t is observed vector

and Yð2Þ
t is the unobserved one. It is remarkable that Yð1Þ

t could be associated with different locations for different time points t. In order to impute

Yð2Þ
t , we first study EðYð2Þ

t jYð1Þ
t ,Yt�1,XtÞ. We then have the following proposition.

Proposition 1. Given Yt�1 and Xt, we can obtain that Yt ¼ðYð1Þ
t ,Yð2Þ

t Þ> follows multivariate normal distribution with conditional mean

μt ¼ðμð1Þt ,μð2Þt Þ > ¼MYt�1þS�1Xtβ and conditional covariance Σ¼ ½Σð11Þ,Σð12Þ;Σð21Þ,Σð22Þ� ¼ σ2ðS > SÞ�1
. Then, we have

EðYð2Þ
t jYð1Þ

t ,Yt�1,XtÞ¼ μð2Þt �Σð21ÞðΣð11ÞÞ�1ðYð1Þ
t �μð1Þt Þ.

Proposition 1 suggests an interesting and recursive imputation method. Specifically, we start with Y0. In this case, the whole response vector

Y0 is not observed at all. We then impute it by a relatively simple estimator Y ?
0 ¼Yc

, where Yc ¼ðYc
1,…,Yc

NÞ > �ℝN and Yc
i ¼PT

t¼1ZitYit

� �
=

PT
t¼1Zit

� �
is the simple averaging over observed responses. Obviously, Yc

is a very crude estimator for Y0. We can try other alter-

native (e.g. Y0 ¼0). We find that the overall results are fairly similar as long as T is sufficiently large. Once Y ?
t�1 is obtained, we then treat it as

4 of 9 LIU ET AL.
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Yt�1. Then by Proposition 1, we know that Y ?
t can be replaced by Y ?

t ¼ðYð1Þ
t ,Y ? ð2Þ

t Þ > . Here, Y ? ð2Þ
t ¼ μ̂ð2Þt � Σ̂ð21ÞðΣ̂ð11ÞÞ

�1
ðYð1Þ

t � μ̂ð1Þt Þ, where

ðμ̂ð1Þt , μ̂ð2Þt Þ > ¼ μ̂t ¼ M̂Y ?
t�1þ Ŝ

�1Xtβ̂ and Σ̂¼ ½Σ̂ð11Þ
, Σ̂ð12Þ

; Σ̂ð21Þ
, Σ̂ð22Þ� ¼ σ̂2ðŜ >

ŜÞ
�1
. Here, M̂ is obtained by replacing θ in M by θ̂, and Ŝ is computed

in a similar way. Then repeating the above procedure, this leads to the entire imputed responses sequence fY ?
t gTt¼1. Thereafter, standard statisti-

cal analysis (e.g. computing sample mean at different time points) can be conducted based on fY ?
t gTt¼1.

3 | NUMERICAL STUDIES

3.1 | Simulation models

To demonstrate the finite sample performance of the proposed method, we present some simulation studies. First, we generate N independent

and identically distributed random variables according to an exponential distribution with mean 10. Denote these variables by Ui with 1≤ i≤N.

For each location i, we randomly select a sample size of ½Ui� from SF ¼f1,2,…,Ng without replacement, where ½Ui� stands for the smallest integer

no less than Ui. Denote the sample by Si. Define aij ¼1 if j�Si and aij ¼0 otherwise. Lastly, let aii ¼0 for every 1≤ i≤N. We next force A to be

symmetric by replacing aij by aji for i< j. Subsequently, W can be obtained by normalizing each row of A. Then W is fixed across different time

points.

Once W and N are given, the response variable Yt is generated according to Yt ¼MYt�1þS�1XtβþS�1Et, where Et is simulated from a multi-

variate normal distribution with mean 0 and covariance σ2I. The true value of ðγ,ρ,β,λ,σ2Þ > is set to be ð0:3,0:2,2,0:5,1Þ > . To simulate Yt

sequence, we first generate Y0 from a multivariate standard normal distribution. Then we generate Yt sequentially according to Equation (2) for

t¼1,…,T0þT, where T0 is a prespecified integer. For example, in this work, we assume T0 ¼1000. We then redefine Yt ¼Yt�T0 , for

t¼ T0þ1,…,TþT0. This leads to the final sequence of fYt :1≤ t≤ Tg.
For illustration purpose, we consider p¼2 and Xit ¼ðXit1,Xit2Þ > �ℝ2. We fix Xit1 ¼1 to be the intercept, define Xit2 ¼YitYiðt�1Þ þeit1 and gen-

erate eit1 from a standard normal distribution. In this way, Xit2 has an effect on Yt and it is fully observed. This satisfies our MAR assumption. For

simplicity, we only consider the temporal correlation between different Xit2s. We generate Zit according to model (3). Recall ς¼ðς0,ς1Þ > �ℝ2. Fix

ς1 ¼0:1 but allow different values of ς0, so that the overall missing rate is controlled between 25% (ς0 ¼1) and 35% (ς0 ¼0:5).

3.2 | Performance measures and simulation results

We consider different network sizes (N = 100, 200, 500) and different number of time points (T = 100, 200, 500). For a reliable evaluation, the

experiment is randomly replicated R¼500 times for every ðN,TÞ combination. For a given ðN,TÞ combination, we use α̂ðrÞ to repeat one particular

estimator (e.g. γ̂) obtained in the rth replication. We further assume that the estimating target is α. Then the root mean square error (RMSE) is

evaluated by RMSE¼fR�1PR
r¼1ðα̂ðrÞ �αÞ2g

1=2
. In addition to that, a 95% confidence interval is constructed as

CIðrÞ ¼ ðα̂ðrÞ � z0:975cSEðrÞ
, α̂ðrÞ þ z0:975cSEðrÞÞ, where cSEðrÞ

is computed according to the asymptotic covariance in Theorem 1 by plugging in the resulting

estimator respectively. Here, zα is the αth quantile of a standard normal distribution. Consequently, the empirical coverage probability (ECP) is

computed as ECP¼R�1PR
r¼1Iðα�CIðrÞÞ, where Ið�Þ is the indicator function. Detailed simulation results are summarized in Tables 1 and 2.

We can draw the following conclusions from Tables 1 and 2. For example, Table 1 presents the case with a missing rate around 25%. We can

find that the WMLE of θ are consistent, with RMSE decreasing towards 0 as minfN,Tg!∞. Additionally, the ECP is fairly close to their nominal

level 95%. This suggests that the resulting estimator is asymptotically normal, and the estimated standard error (i.e. cSE) can approximate the true

SE well. Table 2 reports the case with a missing rate around 35%. The findings are quantitatively similar.

3.3 | Imputation results

As we mentioned before, this work is motivated by a real data application, which is the CECN price index composition problem. In case of no

missing responses (i.e. the price information), a price index can be easily constructed by simply averaging the price values collected from different

locations but at the same time point. Statistically, this amounts to compute μ̂t ¼N�1PN
i¼1Yit. Unfortunately, this simple statistic is not computable

if a significant portion of the responses is missing. Then, imputation becomes a natural choice. More specifically, for a given ði,tÞ, let Y ∗
it be the

imputed value for Yit by one particular type of imputation method (e.g. the proposed imputation method in Section 2.4). Once Y ∗
it s is obtained,

the price index can be computed based on the imputed responses as μ̂ ∗
t ¼N�1PN

i¼1fZitYitþð1�ZitÞY ∗
it g. Recall that Zit ¼1 if Yit is not missing,

and Zit ¼0 otherwise. Under a simulation setup, the imputation accuracy can be measured by RMSE as RMSE¼ T�1PT
t¼1ðμ̂t� μ̂ ∗

t Þ2
n o1=2

.

Because for each ðN,TÞ combination, the simulation experiments, as given in the previous subsection, are randomly replicated for a total of

500 times. This leads to 500 RMSE values for each ðN,TÞ combination, and then they are further averaged and reported in Tables 3 and 4.
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For comparison purpose, we consider the following competitive methods for imputation. The first imputation method is our proposed imputa-

tion method. It is a method based on the spatial dynamic panel data model of Yu et al. (2008). We thus refer to it as SDPD method for short. On

the other hand, in practice, without a SDPD type model to support, one can only consider some simple imputation methods. For example, one can

consider the method of mean imputation based on complete cases (MIBC). That is to impute Yit by μ̂ct ¼ n�1
ct

PN
i¼1ZitYit and nct ¼

PN
i¼1Zit. Second,

one can also consider a complete case-based regression (CCBR) imputation method. That is to impute Yit by Ŷ
c

it ¼X >
it β̂

c
, where β̂

c ¼PN
i¼1

PT
t¼1ZitXitX

>
it

� ��1 PN
i¼1

PT
t¼1ZitXitYit

� �
is the ordinary least squares estimator obtained based on complete cases. Third, one can also con-

sider to impute Yit by its observed spatial neighbourhood average (OSNA). That is to impute Yit by Ys
it ¼ n�1

ts

PN
j¼1aijYjtZjt, where nts ¼

PN
j¼1aijZjt.

Recall that A¼ðaijÞ is the associated adjacency matrix. Lastly, one can also consider to impute Yit by carrying forward its nearest historical obser-

vation. This is a method that has been referred to as the last observation carrying forward (LOCF, Shao & Zhong, 2003). More specifically, for a

given Yit, define tmax ¼ maxfs : s < t,Zis ¼1g. We then impute Yit by Yitmax. This leads to a total of five different imputation methods (our proposed

SDPD method and four competing methods). They are all evaluated in our simulation experiments, and their detailed RMSE values are summa-

rized in Tables 3 and 4.

Table 3 displays the imputation results for the case with missing rate around 25%. We can see that the imputation accuracy of SDPD method

is considerably better than the other four methods in terms of the averaged RMSE values. Additionally, the imputation accuracy improves as

fN,Tg increases. Table 4 is the case with a missing rate of 35%. The findings are quantitatively similar.

3.4 | A real data example

As our last example, we apply the proposed method to the CECN dataset. As we mentioned before, this is a dataset about price information for

construction material. Specifically, the response is the price change in logarithm which is defined as Yit ¼ logðPitÞ� logðPi,t�1Þ, where Pit is the price

of one kind of building materials collected at location i (one particular province) and time point t (one particular month). For this particular case, a

TABLE 1 Simulation results with missing rate of 25% (ς0 ¼1).

N T γ̂ ρ̂ β̂ λ̂ bσ2
100 100 0.59(94.8) 1.67(94.4) 1.37(95.6) 1.52(94.0) 2.05(96.8)

200 0.42(95.0) 1.26(95.6) 0.95(96.0) 1.19(94.4) 1.44(96.8)

500 0.27(94.4) 0.85(94.6) 0.60(95.2) 0.76(94.0) 0.92(96.2)

200 100 0.42(95.6) 1.14(95.2) 1.01(93.4) 1.09(94.4) 1.47(96.4)

200 0.30(95.2) 0.89(95.8) 0.68(96.4) 0.79(94.8) 1.06(95.0)

500 0.19(94.6) 0.55(97.0) 0.41(96.0) 0.53(94.2) 0.64(96.2)

500 100 0.27(94.6) 0.73(94.6) 0.60(95.8) 0.67(93.8) 0.89(97.4)

200 0.20(94.2) 0.58(94.4) 0.44(94.4) 0.51(95.2) 0.60(97.2)

500 0.12(95.0) 0.36(95.2) 0.29(94.2) 0.32(94.8) 0.40(97.6)

Note: The RMSE values (�10�2) are reported for every ðN,TÞ combination and estimator. The ECP (in %) is given in parentheses.

TABLE 2 Simulation results with missing rate of 35% (ς0 ¼0:5).

N T γ̂ ρ̂ β̂ λ̂ bσ2
100 100 0.70(95.6) 1.87(95.8) 1.62(94.6) 1.71(94.4) 2.36(96.4)

200 0.49(95.8) 1.43(96.2) 1.11(96.2) 1.33(95.0) 1.69(96.8)

500 0.31(95.6) 0.99(93.8) 0.69(96.2) 0.87(94.2) 1.08(97.2)

200 100 0.48(95.4) 1.29(97.0) 1.22(92.4) 1.29(93.2) 1.72(95.4)

200 0.34(95.0) 1.01(95.8) 0.79(96.6) 0.92(95.0) 1.24(96.2)

500 0.22(96.0) 0.64(96.4) 0.52(94.6) 0.60(95.8) 0.73(96.6)

500 100 0.32(94.4) 0.84(96.2) 0.72(95.8) 0.78(95.0) 1.05(95.6)

200 0.23(94.0) 0.67(93.0) 0.49(95.8) 0.59(95.0) 0.71(98.4)

500 0.14(93.2) 0.43(95.4) 0.34(94.6) 0.38(94.4) 0.48(96.6)

Note: The RMSE values (�10�2) are reported for every ðN,TÞ combination and estimator. The ECP (in %) is given in parentheses.
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total of 26 locations (i.e. selected provinces) are studied and a total of T¼15 monthly data are collected. The objective of this study is to form an

index to reflect the overall price dynamics (i.e. changes). Statistically, this amounts to compute μ̂t ¼N�1PN
i¼1Yit for each time point t. Unfortu-

nately, due to various practical reasons, around 25% of the price information Yit are missing. The missing rate seems to be clearly depends on

months (e.g. the Spring Festival happens in February). This inspires us to collect for each Yit a covariate of Xit1, where Xit1 ¼1 if t happens to be

January, February or March. Those are the months with missing rate substantially higher than other months due to some practical reason.

TABLE 3 Imputation results with missing rate of 25% (ς0 ¼1).

N T SDPD MIBC CCBR OSNA LOCF

100 100 0.1018 0.2749 0.2602 0.2927 0.1937

200 0.0716 0.1972 0.1819 0.2071 0.1404

500 0.0450 0.1301 0.1137 0.1325 0.0989

200 100 0.0977 0.2857 0.2615 0.2936 0.1920

200 0.0684 0.2037 0.1842 0.2078 0.1407

500 0.0436 0.1343 0.1150 0.1346 0.0985

500 100 0.0957 0.2935 0.2638 0.2953 0.1919

200 0.0671 0.2083 0.1837 0.2086 0.1404

500 0.0425 0.1362 0.1150 0.1342 0.0986

Note: The RMSE values (�10�2) are reported for every ðN,TÞ combination and imputation method.

Abbreviations: CCBR, complete case-based regression; LOCF, last observation carrying forward; MIBC, mean imputation based on complete cases; OSNA,

observed spatial neighbourhood average; SDPD, spatial dynamic panel data.

TABLE 4 Imputation results with missing rate of 35% (ς0 ¼0:5).

N T SDPD MIBC CCBR OSNA LOCF

100 100 0.1334 0.3731 0.3596 0.3963 0.2518

200 0.0937 0.2671 0.2511 0.2797 0.1844

500 0.0588 0.1758 0.1575 0.1784 0.1316

200 100 0.1276 0.3880 0.3615 0.3980 0.2519

200 0.0893 0.2764 0.2548 0.2816 0.1844

500 0.0569 0.1813 0.1591 0.1810 0.1309

500 100 0.1246 0.3981 0.3643 0.4002 0.2505

200 0.0873 0.2823 0.2541 0.2822 0.1837

500 0.0553 0.1842 0.1592 0.1807 0.1311

Note: The RMSE values (�10�2) are reported for every ðN,TÞ combination and imputation method.

Abbreviations: CCBR, complete case-based regression; LOCF, last observation carrying forward; MIBC, mean imputation based on complete cases; OSNA,

observed spatial neighbourhood average; SDPD, spatial dynamic panel data.

TABLE 5 The real data estimation result.

Parameter Coefficient Std. err P-value

γ �0.3238 0.0900 <0.001

λ 0.5799 0.0569 <0.001

ρ 0.3734 0.1233 <0.05

ς0 1.8066 0.1960 <0.001

ς1 �1.2206 0.2465 <0.001

ς2 �0.0177 0.0089 <0.05

β1 �0.0025 0.0070 0.721

β2 0.0003 0.0002 0.134

σ2 0.0023 0.0003 <0.001
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Additionally, we consider another covariate of Xit2, which is the growth rate of fixed asset investment in construction industry. Obviously, Xit1 and

Xit2 are the covariates always observed.

We then try to apply the proposed estimation methods to the dataset. The detailed results are given in Table 5. First, we find that ς1 is esti-

mated to be ς̂1 ¼�1:2206, which is negatively significant at 0.1% level. This confirms our experience that the missing rate in those months

(January, February or March) is substantially higher than other months. Second, we find that the other parameters (e.g. γ,λ,ρ) are significant at 5%

level. This implies that both spatial and temporal dependencies do exist in price change dynamics. Specifically, γ is negatively estimated to be

γ̂¼�0:3238. This suggests that higher (lower) price change from the previous time points might lead to lower (higher) price change of the current

time point for the same location. In the meanwhile, both ρ and λ are positively estimated to be ρ̂¼0:3734 and λ̂¼0:5799, respectively. This sug-

gests that the price dynamics of neighbouring locations should be positively correlated across different time points.

4 | CONCLUSION

In this article, we develop a novel imputation method to analyse the missing response problem in spatial dynamic panel data. The SDPD model of

Yu et al. (2008) is used as the model foundation. A logistic regression model is used to reflect the missingness mechanism. The WMLE is proposed

for parameter estimation in the presence of incomplete data. The associated asymptotic properties are investigated. Moreover, a novel

regression-based imputation method is proposed. The proposed method makes use of the information from spatial dependence, temporal depen-

dence and exogenous regression covariates. Finally, the performance of WMLE and imputation methods is demonstrated by both simulation stud-

ies and a real data example.

To conclude this article, we discuss here several interesting topics for future study. First, the time and individual fixed effects can be consid-

ered in SDPD model (Lee & Yu, 2010). Second, more flexible spatial lags (e.g. different spatial weight matrices) and temporal lags could be consid-

ered (Li, 2017). Third, we can extend the error term to be spatially dependent (Yang, 2018). Fourth, the SDPD model used in this context assumes

both the spatial and temporal dependencies to be reflected by scalar parameters. More flexible dependency parameters can be considered (Dou

et al., 2016; Zhu et al., 2019). Lastly, the weight matrix in this work is predetermined. However, in many cases, the weight matrix is endogenously

determined, because locations sharing similar features are more likely to be connected. Thus, how to model this endogenous phenomenon is an

important topic worth future study.
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