
Statistics and Its Interface Volume 16 (2023) 397–407

Compressing recurrent neural network models
through principal component analysis

Haobo Qi, Jingxuan Cao, Shichong Chen, and Jing Zhou
∗

Currently, deep learning-based neural network models,
such as recurrent neural networks (RNNs) and long short-
term memory (LSTM) architecture, are considered state-of-
the-art solutions to most of the problems associated with
the effective execution of tasks in the field of natural lan-
guage processing (NLP). However, a large number of pa-
rameters and significantly high memory complexity are re-
quired to ensure the effective application of such models,
thereby increasing the difficulty of deploying such models
in embedded systems, such as those used in mobile devices
and tablets. In this study, we propose a technique for com-
pressing RNN-based models through principal component
analysis. Our proposed compression approach begins with
the embedding layer, after which it progresses to the final
output layer. For each target layer, we propose a principal
component analysis approach for reducing the dimensions in
the two-dimensional (2D) estimated weight matrix. Through
this approach, we develop a reduced model structure with
fewer parameters than those of the benchmark model. Addi-
tionally, our proposed approach ensures improved prediction
accuracy compared to that of the benchmark model. More-
over, we propose a novel parameter-initialization method
based on the score matrix of the principal component. We
evaluate the effectiveness of our proposed method by con-
ducting experiments on various NLP-related tasks, such as
text classification and language translation, and datasets.
The results of our experiments are significantly encouraging,
as they pertain to the compression of RNN models through
principal component analysis.

AMS 2000 subject classifications: Primary 68T50;
secondary 68U15, 68W25.
Keywords and phrases: Model compression, Principal
component analysis, RNN compression.

1. INTRODUCTION

Over the past few decades, natural language processing
(NLP) has become a popular field of research. Text sequence
generation [27, 35], machine translation [4, 6], and text sen-
timent analysis [16] are some of the popular practical ap-
proaches associated with NLP. The field of NLP mainly in-
volves the investigation and application of various theories

∗Corresponding author.

and methods that can be used to achieve effective communi-
cation between computers and human beings through natu-
ral language. Unlike structured data, natural languages are
typical representations of unstructured textual data with
specific challenges when it comes to modeling. Fortunately,
current state-of-the-art deep learning-based models have be-
come solutions for most of the challenges associated with
the effective execution of tasks pertaining NLP. Various re-
searchers have proposed various algorithms and models for
addressing such problems. For instance, [17, 21] proposed
N -gram-based models, [18, 37] proposed convolutional neu-
ral network (CNN)-based models, [6, 15] proposed recur-
rent neural network (RNN)-based models, [4] proposed an
attention-based model, and [11] proposed a transformer-
based model.

Among all the models mentioned above, RNN models,
such as those based on long short-term memory (LSTM)
architecture and those based on autoencoder frameworks,
are the most studied and most popularly used models in
NLP. RNN-based models demonstrate superior performance
in the execution of tasks related to NLP because they con-
sider the long-term and short-term dependencies between
words. However, the effective application of such RNN-based
models usually requires a large number of parameters and
a significant level of memory complexity, thereby increas-
ing the difficulty of deploying such models in embedded
systems, such as those used in mobile devices and tablets,
whose effectiveness is limited by memory, computing power,
and battery life. Therefore, the development of methods for
compressing RNN-based models could result in memory and
computational cost savings. This makes RNN-based model
compression a problem of great practical importance.

Consider, for example, a standard RNN model with one
embedding layer, L recurrent hidden layers, and one fully
connected layer. Let xt ∈ R

V1 be the input text sequence,
where V1 represents the vocabulary size. Correspondingly,
let yt ∈ R

V2 be the output text sequence, and V2 be the
related vocabulary size. Next, define hl

t ∈ R
kl as the output,

i.e., the activation, of the l-th recurrent layer at time t, where
t = 1, 2, ..., T and l = 1, 2, ..., L. Specifically, denote the
output of the embedding layer as h0

t ∈ R
k0 . A standard

RNN model can then be formulated as follows:

h0
t = Ext

hl
t = σ(W l

xh
l−1
t +W l

hh
l
t−1 + bl) for l = 1, 2, ..., L

yt = softmax(WL+1hL
t + bL+1)

(1)

https://www.intlpress.com/site/pub/pages/journals/items/sii/_home/_main/index.php


where σ(·) is a non-linear activation function, bl ∈ R
kl and

bL+1 ∈ R
V2 denote the bias vector, E ∈ R

k0×V1 is the em-
bedding weight matrix, WL+1 ∈ R

V2×kL is the weight ma-
trix of the fully connected layer,W l

x ∈ R
kl×kl−1 is the weight

matrix for the current state, and W l
h ∈ R

kl×kl is the weight
matrix for the historical state.

For a specific RNN model, the number of parameters de-
pends on the embedding weight matrix E and various W
matrices. Suppose that ki = k for i = 0, 1, ..., L; then, the
total number of parameters (omit bias) in an RNN model
is approximately V1k + V2k + 2Lk2. In practice, the vocab-
ulary size of V1 and V2 can be very large. Therefore, W 0

and WL+1 contains a great quantity of parameters, i.e., V1k
and V2k, respectively. Moreover, to ensure satisfactory per-
formance, the dimensions of the recurrent hidden layer ki
cannot be too small. This results in another non-ignorable
cost of parameters because the number of parameters in the
hidden layers is quadratic in k, i.e., 2Lk2. To demonstrate
the issue of huge parameters in a more intuitive manner,
we provide a simple example. Consider the WMT2017 news
dataset [5] for Chinese–English translation. In the trans-
lation of English to Chinese, we have a vocabulary size of
V1 = 27,669 and V2 = 29,941. Consider a simple RNN model
with only one hidden layer, i.e., L = 1, of k1 = k = 1,024.
For the embedding layer, let the dimension of k0 be equal
to k. Therefore, the total number of parameters (omit bias)
in this simple RNN model is approximately 60 million. Fur-
thermore, such a simple RNN model requires a total of 856
MB of storage space, which is unbearable for mobile devices.

The discussion presented above suggests that it would be
of great importance to develop a model compression method
for RNN-based models. Specifically, in this study, we pro-
pose a compression technique based on principal component
analysis (PCA). We start with the embedding layer, and the
compression procedure of the subsequent layers is consistent.
For the embedding layer with k0 hidden neurons, the column
vectors of weight matrix E are usually highly correlated with
each other because of the relatively large k0. Therefore, the
weight matrix E can be well approximated through the lin-
ear combinations of a few basis weights. Accordingly, a novel
PCA can be conducted on weight matrix E. The resulting
eigenvalues are then obtained. In most cases, only a few top
eigenvalues can be used to explain a significant portion of
total tensor weight variability. Specifically, let k̃0 be the min-
imal number of top eigenvalues, such that their explained
total variability exceeds a pre-specified value, e.g., 90%. E
is then reduced to Ẽ of shape V1 × k̃0. Because k0 is re-
duced to k̃0, the weight matrix W 1

x also requires dimension
reduction to match the output shape of the embedding layer
and the hidden recurrent layer. This reduces the dimension
of W 1

x into k̃0 × k1. We then apply this PCA technique to
the possible subsequent hidden layers till the output layer.
As a result, the entire model structure can be substantially
compressed, and both the number of parameters and the in-
ference costs can be substantially reduced. Meanwhile, the

prediction accuracy remains comparable compared to that
of the baseline model.

Compared to previous model compression methods, the
proposed method has the following contributions. First, un-
like some previous methods [14], the proposed PCA method
does not increase or decrease the number of layers in the
RNN model. The reduced dimension is selected based on a
variance contribution rate criterion. Second, the proposed
method is a more general method that can be applied to
both the embedding layer and each hidden layer, instead
of treating them independently. Finally, we propose a new
parameter initialization method. It takes the principal com-
ponent score matrix as the parameter initialization value
for the weight matrix. We found that compared to random
initialization, the new parameter initialization strategy can
make the model converge faster.

The remainder of this paper is organized as follows. In
Section 2, we review the classical and most recent litera-
ture associated with RNN model compression. In Section
3, we develop a PCA-related compression method for both
the text classification and language translation models. In
Section 4, we present extensive experiments to evaluate the
proposed method, and the results are summarized in Section
5. Section 6 concludes this paper with a brief discussion on
directions for future research.

2. RELATED WORKS

Recently, various scholars have devoted significant effort
to the field of model compression. According to the sum-
mary presented by [9, 12], the current model compression
methods related to RNN-based models can be categorized
as follows: compact model, tensor decomposition, data quan-
tization, and weight pruning. Our proposed new method is
associated with tensor decomposition. Next, we shall focus
on the literature review of tensor decomposition, after which
we shall briefly review the other three categories.

Tensor decomposition refers to exploiting matrix decom-
position on weight tensors, such as the weight matrix of
hidden layers and word embedding layers. By decomposing
the weight matrix into several matrices, one actually decom-
poses a target layer into multiple layers, and each layer cor-
responds to a decomposed matrix. In the scenario of RNN-
based models, researchers explored various tensor decom-
position methods, such as full-rank decomposition [23, 26],
singular value decomposition (SVD) [20, 22, 34], QR decom-
position [2, 36], and CUR decomposition [13, 28]. Among
those methods, the SVD-based method empirically results
in a relatively low accuracy loss, and sometimes, it improves
the accuracy. For example, [25] adopted SVD to indepen-
dently compress each recurrent hidden layer into three dif-
ferent weight matrices. Acharya [1] applied SVD to the em-
bedding matrix only and replaced that matrix with two low-
rank matrices. Both the abovementioned methods require an
intermediate layer to be inserted between layers, and they

398 H. Qi et al.



only consider either the embedding matrix or the recurrent
hidden layers. It seems that none of the existing methods
have considered compressing both the embedding layer and
hidden layers.

Except for tensor decomposition, the other three methods
are also frequently used in model compression. The compact
model refers to merging or removing unimportant network
modules in the original model structure and designing a new
simplified model. Various improved RNN-based models be-
long to this category, such as the GRU model [7], the S-
LSTM proposed by [32], and JANET proposed by [30]. The
parameter pruning method is generally aimed at pruning
the gradients of each part in the model [8, 38]. It requires
a large amount of time and computational resources to it-
eratively find the appropriate pruning thresholds. The data
quantization method has relatively poor results on RNN-
based models. Both [31, 33] pointed out that data quanti-
zation could result in a significant loss of model accuracy,
although it can achieve a great compression rate.

Our proposed method maintains the idea of tensor de-
composition and compresses the weight matrix from the per-
spective of principal component analysis. In summary, we
determine that the existing methods for model compression
can be further improved from the following perspectives.
First, the method should not increase the number of layers
in the intermediate process of compression. Second, we re-
quire a more general method that can be applied to both
the embedding layer and each hidden layer. Finally, there
should be a new initialization strategy for the compressed
model.

3. METHODOLOGY

3.1 Model compression via PCA

Consider a 2D matrix A of shape p× q, such as the em-
bedding weight matrix or weight matrices in hidden lay-
ers. The goal is to reduce the dimension of the row, i.e.,
reducing p to p̃ with p̃ � p, while maintaining most of
its variability. Let A = (A1, ..., Aq) with Ai denote the i-
th column vector of A and Ā = (Ā1, · · · , Āq)

� ∈ R
q de-

note the column mean vector, where Āi = p−1
∑p

j=1 Aij .
Therefore, the covariance matrix of A can be defined as
follows: Σ = (A − Ā1�

q )(A − Ā1�
q )

�/q ∈ R
p×p, where

1q = (1, 1, ..., 1)� ∈ R
q represents the vector with all its

values equal to one. Σ then has the following spectral de-
composition

Σ = UΛU� =

p∑
j=1

λjuju
�
j ,

where U = (u1, u2, ..., up) is an orthonormal matrix and
Λ = diag(λ1, λ2, ..., λp) with λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 is a
diagonal matrix. Here, λjs are the eigenvalues of Σ, and ujs
are their corresponding eigenvectors. In the scenario of PCA,

the accumulative variability contribution is typically used to
determine the number of principal components. Specifically,
for any positive integer 1 ≤ n ≤ p, the accumulative vari-
ability contribution is defined as follows:

(2) ηn =

∑n
j=1 λj∑p
j=1 λj

According to (2), ηn is a number between 0 and 1. It in-
creases with respect to n. For a prespecified threshold η (e.g.,
85% or 90%), we choose the smallest integer, i.e., p̃, that sat-
isfies ηp̃ ≥ η as the reduced dimension. For A with extremely
large p, the distribution of λj , j = 1, 2, ..., p is usually tailed.
In other words, only a few top eigenvalues are very large,
whereas the rest are close to zero. As a result, p̃ is expected
to be much smaller than p. Once the reduced dimension is
determined, we must calculate the reduced matrix Ã. Let
Up̃ = (u1, u2, ..., up̃) ∈ R

p×p̃ be the truncated matrix of U

with its first p̃ column vectors. The reduced matrix Ã can
then be calculated as follows: Ã = U�

p̃ A ∈ R
p̃×q. This com-

pletes the proposed PCA compression method.

3.2 PCA compression for text classification
models

In this subsection, we apply the PCA compression tech-
nique presented above to a text classification model, which is
one of the most basic and important NLP tasks. Numerous
real applications, such as sentiment analysis, public opin-
ions analysis, and spam filtering, belong to this field. Con-
sider, for example, a simple text classification model with
one embedding layer, one LSTM layer, and one fully con-
nected layer. Let vt ∈ R

V1 and yt ∈ R
V2 be the input

and output text sequence, respectively, where V1 and V2

are their corresponding vocabulary size. Denote the output
of the embedding layer as follows: xt ∈ R

k0 . Next, define
ft, it, ot ∈ R

k1 as the forget gate, input gate, and output
gate, respectively, in the LSTM layer at time t. Further-
more, define c̃t, ct, ht ∈ R

k1 as the current state, cell state,
and output of the LSTM layer at time t, respectively. The
model can then be formulated as follows:

xt = Evt

ft = σ(Wfhht−1 +Wfxxt + bf )

it = σ(Wihht−1 +Wixxt + bi)

ot = σ(Wohht−1 +Woxxt + bo)

c̃t = tanh(Wchht−1 +Wcxxt + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

yt = softmax(Wht + b)

(3)

where σ(·) and tanh(·) denote the sigmoid and hyperbolic
tangent activation functions, respectively. The sign � indi-
cates element-wise multiplication. To this end, we obtain the
embedding weight matrix as follows: E ∈ R

k0×V1 . However,

Compressing RNN models through PCA 399



Figure 1. Illustration of PCA compression method for model
(3). For simplicity, we only show the layers that corresponded

with dimension reduction.

the weight matrices for the subsequent layers are somewhat
complicated. Considering the forget gate ft as an example,
denote the weight matrices as follows: [Wfh,Wfx, bf ], where
Wfh ∈ R

k1×k1 represents the historical output, Wfx ∈
R

k1×k0 represents the current input, and bf ∈ R
k1 repre-

sents the bias. Similarly, we obtain [Wih,Wix, bi] through
input gate it, [Woh,Wox, bo] through input gate ot, and
[Wch,Wcx, bc] through the current state c̃t. Their dimen-
sions are correspondingly equal to [Wfh,Wfx, bf ]. Finally,
W ∈ R

V2×k1 and b ∈ R
V2 represent the weight matrices and

the bias of the fully connected layer.

For such a text classification model, we begin from the
embedding layer. By applying the proposed PCA compres-
sion technique, the embedding weight matrix E ∈ R

k0×V1 is

reduced to Ẽ ∈ R
k̃0×V1 . Once k0 is reduced to k̃0, we must

further change the dimensions of the subsequent weight
matrices in the LSTM layer because the compression in
the embedding layer has a progressive effect on the next
layer. Specifically, the columns of Wfx,Wix,Wox and Wcx

should be reduced from k0 to k̃0 via PCA compression so
that the dimensions of the weight matrices and input vec-
tors match with each other. Consequently, we should obtain

W̃fx, W̃ix, W̃ox, W̃cx ∈ R
k1×k̃0 . Here, k̃0 is selected through

a pre-specified accumulative variability contribution thresh-
old η. The procedure explained above is summarized in Fig-
ure 1. Finally, we substitute E,Wfx,Wix,Wox and Wcx with
their corresponding reduced matrices in (3), after which we
retrain the model.

3.3 PCA compression for language
translation models

In the previous subsection, the simple LSTM model is
adopted for text classification tasks, and the proposed PCA
technique is conducted for compression. However, such a
simple model may not work in language translation tasks,
such as the translation of Chinese to English. This is because
such tasks usually involve dealing with complex grammar

and word orders. Thereafter, the RNN models for trans-

lation tasks often have significantly complex structures for

exploring deeper textual information. Specifically, we adhere

to the encoder–decoder framework proposed by [6], and we

consider a simplified model, which uses one LSTM layer as

both the encoder block and the decoder block. Let ut ∈ R
V1

and vt ∈ R
V2 represent the input and output text sequences,

respectively, of languages A, i.e., Chinese, and B, i.e., En-

glish, where V1 is the vocabulary size for language A and

V2 is the vocabulary size for language B. Furthermore, let

the length of the input text sequence be T and the output

text sequence be T ′. First, we consider the encoder block,

which is exactly similar to that of (3), except for the last

fully connected layer. For t = 1, 2, ..., T , we formulate it as

follows:

xt = E1ut

ft = σ(Wfhht−1 +Wfxxt + bf )

it = σ(Wihht−1 +Wixxt + bi)

ot = σ(Wohht−1 +Woxxt + bo)

c̃t = tanh(Wchht−1 +Wcxxt + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct),

(4)

where the symbols and parameters are defined similarly to

those in (3), and the only difference is the dimensions of dif-

ferent weight matrices. Specifically, the embedding weight

matrix is E1 ∈ R
k0×V1 , and the output of the embedding

layer in the encoder block is xt ∈ R
k0 . The three gates in the

LSTM are ft, it, ot ∈ R
k1 , and the current state, cell state,

and hidden state are c̃t, ct, ht ∈ R
k1 . Finally, the weight ma-

trices of the input layers are Wfx,Wix,Wox,Wcx ∈ R
k1×k0 ,

and the weight matrices of the hidden state layers are

Wfh,Wih,Woh,Wch ∈ R
k1×k1 . Next, to connect the encoder

block with the decoder block, Cho [6] suggested using latent

state vectors. In the proposed model, the latent state vectors

are defined as hT and cT , where hT represents the output

of the hidden state at time T , and cT represents the cur-

rent state at time T . Finally, we consider the decoder block.

Because the dimensions of state units in the encoder and de-

coder blocks could be different, we use two weight matrices

H and C to transform the dimensions of hT and cT . Sup-

posing that the dimension of the hidden state in the decoder

block is k3, we obtain H ∈ R
k3×k1 and C ∈ R

k3×k1 . To this

end, we formulate the decoder block for t = 1, 2, ..., T ′ as

400 H. Qi et al.



follows:

c′0 = CcT , h
′
0 = HhT

yt = E2vt

f ′
t = σ(W ′

fhh
′
t−1 +W ′

fxyt−1 + b′f )

i′t = σ(W ′
ihh

′
t−1 +W ′

ixyt−1 + b′i)

o′t = σ(W ′
ohh

′
t−1 +W ′

oxyt−1 + b′o)

c̃′t = tanh(W ′
chh

′
t−1 +W ′

cxyt−1 + b′c)

c′t = f ′
t � c′t−1 + i′t � c̃′t

h′
t = o′t � tanh(c′t),

vt = softmax(Wh′
t + b)

(5)

The series of equations (5) suggests that the decoder block
also contains an LSTM layer, whose initial states of h′

0

and c′0 are inherited from the hidden states of hT and cT
in the encoder block. In the decoder block, the embed-
ding weight matrix is E2 ∈ R

k2×V2 , and the output of
the embedding layer in the encoder block is xt ∈ R

k2 .
The three gates in the LSTM layer are f ′

t , i
′
t, o

′
t ∈ R

k3 ,
and the current state, cell state, and hidden state are
c̃′t, c

′
t, h

′
t ∈ R

k3 . The weight matrices of the input layers
are W ′

fx,W
′
ix,W

′
ox,W

′
cx ∈ R

k3×k2 , and the weight matri-

ces of the hidden states are W ′
fh,W

′
ih,W

′
oh,W

′
ch ∈ R

k3×k3 .
Finally, the weight matrix of the fully connected layer is
W ∈ R

k3×V2 .
We next explain how to conduct the proposed PCA com-

pression method on models (4) and (5). In the previous text
classification task, we did not consider compressing the ma-
trices of Wfh,Wih,Wch,Woh. This is because the dimen-
sions of these hidden states are not that large. However, in
the translation task, the dimensions of Wfh,Wih,Wch,Woh

could be very large in the encoder–decoder framework,
which will result in a significantly complex compression pro-
cedure. Specifically, for the encoder block, we first compress
the row of the embedding weight matrix of E1. By applying

the PCA technique, E1 is reduced to Ẽ1 ∈ R
k̃0×V1 , where k̃0

is selected through a pre-specified accumulative variability
contribution threshold η.

Next, we compress the rows and columns of the weight
matrices Wfh,Wih,Woh,Wch simultaneously. Specifically,

the rows of the four matrices are reduced from k1 to k̃1,
where k̃1 is also selected through the pre-specified thresh-
old η. The columns of these matrices are also reduced
from k1 to k̃1 in the same manner. As a result, we ob-
tain the reduced hidden state weight matrices as follows:

W̃fh, W̃ih, W̃oh, W̃ch ∈ R
k̃1×k̃1 . Therefore, to match the di-

mensions of the current input layer and the hidden states,
we must adjust the dimension of Wfx,Wix,Wox,Wcx into

a reduced matrix of the shape k̃1 × k̃0. As for the de-
coder block, a similar compression procedure can be used.
For example, the dimension of the embedding weight ma-

trix E2 is reduced into Ẽ2 ∈ R
k̃2×V2 , the weight matri-

ces of hidden states W ′
fh,W

′
ih,W

′
oh,W

′
ch are reduced into

Figure 2. Illustration of PCA compression method for models
(4) and (5). For convenience, we use W·x and W·h to

represent the four weight matrices of the input and hidden
states in the encoder block. Similarly, [W ′

·x,W
′
·h], [W̃·x, W̃·h]

and [W̃ ′
·x, W̃

′
·h] are defined accordingly.

W̃ ′
fh, W̃

′
ih, W̃

′
oh, W̃

′
ch ∈ R

k̃3×k̃3 , and the weight matrices of
the current input layers W ′

fx,W
′
ix,W

′
ox,W

′
cx are reduced

into W̃ ′
fx, W̃

′
ix, W̃

′
ox, W̃

′
cx ∈ R

k̃3×k̃2 , respectively. Finally, the

matrices of H and C are reduced into H̃ ∈ R
k̃3×k̃1 and

C̃ ∈ R
k̃3×k̃1 , respectively, so that the dimensions of the hid-

den states in the encoder and decoder blocks match with
each other. The entire procedure is summarized in Figure 2.

4. EXPERIMENTS

To empirically demonstrate the proposed compression
method, we conducted various experiments on two classi-
cal tasks: text classification and language translation. In the
text classification task, the proposed compression method is
evaluated on both the RNN and LSTM models using the
DBpedia dataset [3], whereas in the task of language trans-
lation, a model based on the encoder–decoder framework is
evaluated using the WMT2017 dataset [5].

4.1 Datasets

We first introduce the datasets used in the two classical
NLP tasks. They are the DBpedia dataset [3] used for text
classification and the WMT2017 dataset [5] used for lan-
guage translation. The DBpedia dataset is a classical textual
dataset derived from 240,798 Wikipedia entries. Each of the
entries is marked using multiple tags. An initial data prepro-
cessing task is conducted for the raw dataset to delete the
error words. We then select the top-five frequently appear-
ing tags for this particular setting, which are agent, place,
species, work, and event. This results in a total of 231,998
Wikipedia entries remaining. Because 81% of the entries are
shorter than 1,000, we set the maximum input length as

Compressing RNN models through PCA 401



Table 1. Parameter Information of Text Classification Model

Layer Number of Nodes Output Shape Number of Parameters

Input 526,786 (256, 1000) 0
Embedding 128 (256,1000,128) 67,428,608

LSTM 128 (256,128) 131,584
Dense 64 (256,64) 8,256

Dropout 64 (256,64) 0
Dense 14 (256,14) 910

Dense(Softmax) 5 (256,5) 75

Table 2. Parameter Information of Language Translation Model

Layer Number of Nodes Output Shape Number of Parameters

Input (English) 27,669 (256, 40) 0
Embedding (English) 512 (256,40,512) 14,166,528
LSTM (Encoder) 1024 (256,1024) 6,295,552

Dense 1024 (256,1024) 1,049,600
Dense 1024 (256,1024) 1,049,600

Input (Chinese) 29,941 (256, 39) 0
Embedding (Chinese) 512 (256,39,512) 15,329,792

LSTM (Decoder) 1024 (256,39,1024) 6,295,552
Dense (Softmax) 29,941 (256,39,29941) 30,689,525

1,000 and the vocabulary size as 526,786. The other dataset
is WMT2017, which is a famous machine translation bench-
mark dataset. It contains approximately 250,000 sentences
for both Chinese and English comments for news. A simi-
lar data preprocessing task is conducted, and the comments
longer than 40 are deleted. This results in a total of 87,072
pairs of comments left. The vocabulary sizes for Chinese and
English are 29,941 and 27,669, respectively.

4.2 RNN-based models

In the task of text classification, we follow the settings
presented in the work of [16], and we adopt the RNN and
LSTM architecture. Specifically, the model contains seven
layers, including one input layer with a dimension of 1,000,
one embedding layer with 128 hidden nodes, one simple
RNN layer or LSTM layer with 128 hidden nodes, two fully
connected layers with dimensions of 64 and 14, respectively,
one dropout layer, and one softmax layer. The detailed pa-
rameter information is listed in Table 1. As shown in Ta-
ble 1, the dimension of the embedding weight matrix is ex-
tremely high. It contains 67,428,608 parameters, which ex-
plains 99.79% of the parameters in the entire model. This
suggests that the proposed compression strategy for text
classification is reasonable.

Next, for the translation task, we follow the settings pre-
sented in the work of [6], and we adopt an encoder–decoder
model structure. The model contains two blocks and a total
of nine layers. Specifically, the encoder block includes one
input layer for English sequences with an input length of
40, one embedding layer with 512 hidden nodes, and one
LSTM layer with 1,024 hidden states. The decoder block

contains one input layer for Chinese sequences with an input
length of 39, one embedding layer with 512 hidden nodes,
and one LSTM layer with 1,024 hidden states. Two fully
connected layers are set between the two blocks mentioned
above. This approach aims to transform the dimensions of
hidden states in the LSTM encoder layer to the dimensions
of hidden states in the LSTM decoder layer. Finally, a fully
connected layer with softmax activation is used after the de-
coder layers. The parameter information of the entire model
is summarized in Table 2.

As shown in Table 2, the number of parameters in the
embedding layer is still significantly large. However, it only
accounts for 18.92% of all the model parameters, which is
smaller than the proportion in the classification task. This
is because the number of parameters in other layers, such
as the encoder and decoder layers, is also significantly large.
This indicates that the compression method for the transla-
tion task will be more complicated than that for the classi-
fication task.

4.3 Performance measures

Following existing literature obtained from the works of
[10, 24], we consider three metrics for evaluating compres-
sion performance. Specifically, we calculate (i) the param-
eter reduction ratio (Prr), (ii) the FLOPs reduction ratio
(Frr), and we monitor the (iii) out-of-sample prediction ac-
curacy (Acc).

4.4 Implementation details

Although the proposed PCA compression method is con-
ceptually simple, its practical implementation is not trivial.

402 H. Qi et al.



It involves two important tuning parameters: the variabil-
ity threshold η and the parameter initialization value. The
variability threshold η is used to determine the reduced di-
mensions of weight matrices in neural networks. Specifically,
the smaller the η value, the higher the compression rate that
can be obtained, e.g., a slimmer model structure. In our ex-
periments, we set η = 0.4, 0.6, 0.85, 0.9, 0.95. Another tuning
parameter that could influence the results of the training
process is the choice of initialization for the reduced model.
Generally speaking, dimension reduction techniques pay a
cost of prediction accuracy, which can be partly recovered
by retraining the reduced model. Therefore, initialization
methods might result in different final prediction accuracies.
In our experiments, we consider the he-normal initialization
method and the reduced PCA matrices as the initialization
parameters, respectively. This results in a total of 10 differ-
ent combinations for the classification and translation tasks.

For both the DBpedia and WMT2017 datasets, 80% of
the data is used as the training set, and the remaining 20%
is used as the test set. The models used for the classification
task are trained using the RMSprop [29] algorithm with an
initial learning rate of α = 10−4 and a decay rate of ρ = 0.9.
For the translation task, an Adam [19] algorithm with an
initial learning rate of α = 10−3 and an exponential decay
rate of β1 = 0.9, β2 = 0.98 is adopted. The other settings are
similar. First, the batch size is set to 256 for all the working
models. Second, the weight decay rate is set to 10−5 with
an l2-norm regularizer for all models. Finally, a total of 50
epochs are conducted for each working model, and we record
the best prediction accuracy on the validation dataset as the
Acc performance.

5. RESULTS

5.1 Compression results for the text
classification task

In this subsection, we investigate the impact of PCA
compression on the two proposed text classification mod-
els. Three measures are used to evaluate the finite sample
performance: prediction accuracy (Acc), the parameter re-
duction ratio (Prr), and the FLOP reduction ratio (Frr).
We list the detailed compression results in Table 3, and we
present the training performance in Figures 3-4.

For illustration purposes, the simple RNN and LSTM
models described in Section 4.2 are considered the baseline
models. Next, we investigate a total of five different val-
ues of the variability threshold η = (0.4, 0.6, 0.85, 0.9, 0.95).
For each η, we consider two initialization strategies: the he-
normal and the reduced PCA matrices. This results in a
total of ten combinations for the RNN and LSTM models,
respectively. We then obtain the following conclusions from
Table 3. First, we find that as long as the variability thresh-
old value η is set to be larger than 0.85, insignificant predic-
tion accuracy would be sacrificed. Instead, the best predic-
tion accuracy can be even higher than that of the baseline

model. However, we can observe a significant drop in accu-
racy if η is set too low. For example, the accuracy drops by
approximately 3.5% for the RNN model with η = 0.4. Sim-
ilar results can be observed in the LSTM model. Second,
we establish that different initialization strategies have an
insignificant effect on prediction accuracy. The prediction
accuracy achieved through the proposed PCA initialization
approach is slightly better than that of the he-normal ini-
tialization approach when the value of η is set higher than
0.85.

We then present the detailed training performance in Fig-
ures 3-4. For each figure, the left panel shows the accuracy
curves with different variability threshold values of η (in-
cluding the baseline model) under the PCA initialization
strategy, and the right panel shows those of the curves un-
der the he-normal initialization approach. We establish that
when η ≥ 0.85, the reduced models using the PCA-based
initialization strategy converge faster than the models using
the he-normal initialization approach. This suggests that the
PCA-based initialization strategy offers a satisfactory start-
ing point during the retraining process. It not only reduces
the training cost but also avoids sacrificing the prediction
accuracy.

5.2 Compression results for the language
translation task

In this subsection, we investigate the impact of PCA-
based compression on the translation task using the
encoder–decoder model. The three measurements, Acc, Frr,
and Prr, are summarized in Table 4. The detailed training
process is displayed in Figure 5. As shown in Table 4, as
long as the variability threshold value η is set to be larger
than 0.85, the Acc values of the reduced models decrease by
less than 1%. Compared to the results of the classification
task, the accuracy drops significantly under similar values
of η. Specifically, the prediction accuracy decreases by ap-
proximately 1%, 8%, and 12% for η = 0.85, 0.6 and 0.4. Ad-
ditionally, we establish that different initialization settings
have a significant effect on prediction accuracy. The pre-
diction accuracy achieved using the proposed PCA-based
initialization strategy is better than that achieved through
the he-normal initialization approach.

Figure 5 shows the prediction accuracy curves of the
encoder–decoder framework with different settings of η and
initialization strategies. The left panel shows the accuracy
curves with different variability thresholds η (including the
baseline model) using the PCA-based initialization strat-
egy, and the right panel shows the accuracy curves under
the he-normal initialization approach. We establish that the
reduced models achieved through the PCA-based initializa-
tion strategy generally converge faster than the models using
the he-normal initialization approach. This suggests that the
PCA-based initialization strategy offers a satisfactory start-
ing point during the retraining process. It not only reduces
the training cost but also avoids sacrificing prediction accu-
racy.

Compressing RNN models through PCA 403



Table 3. Compression Results of Text Classification Models

Model η0 Initialization Acc Frr(%) Prr(%)

RNN

baseline 0.9866

0.4
PCA 0.9405 99.20 99.18

He normal 0.9530 99.20 99.18

0.6
PCA 0.9831 98.41 98.40

He normal 0.9838 98.41 98.40

0.85
PCA 0.9873 95.29 95.28

He normal 0.9836 95.29 95.28

0.9
PCA 0.9863 91.38 91.37

He normal 0.9868 91.38 91.37

0.95
PCA 0.9865 79.67 79.66

He normal 0.9846 79.67 79.66

LSTM

baseline 0.9863

0.4
PCA 0.9529 99.15 99.11

He normal 0.9562 99.15 99.11

0.6
PCA 0.9845 98.37 98.33

He normal 0.9841 98.37 98.33

0.85
PCA 0.9872 97.59 97.55

He normal 0.9834 97.59 97.55

0.9
PCA 0.9873 96.80 96.77

He normal 0.9855 96.80 96.77

0.95
PCA 0.9874 95.24 95.21

He normal 0.9874 95.24 95.21

Table 4. Compression Results of the Language Translation Model

η0 Initialization Acc Frr(%) Prr(%)

baseline 0.3236

0.4
PCA 0.2164 98.70 98.66

He normal 0.1905 98.70 98.66

0.6
PCA 0.2501 95.57 95.45

He normal 0.2363 95.57 95.45

0.85
PCA 0.3205 69.67 69.07

He normal 0.3118 69.67 69.07

0.9
PCA 0.3294 56.90 56.16

He normal 0.3225 56.90 56.16

0.95
PCA 0.3316 38.10 37.36

He normal 0.3265 38.10 37.36

6. CONCLUSIONS

In this study, we propose a novel PCA-based method
for compressing RNN-based models. The proposed method
focuses on weight matrices of both the embedding layer
and the hidden layers. The entire compression procedure is
conducted sequentially. Although the proposed PCA-based
method is associated with the tensor decomposition method,
it admits several distinctive characteristics. First, compared
to the current tensor decomposition methods, our proposed
method does not introduce additional intermediate linear
layers. Second, our proposed method is a more general ap-
proach that can be applied to both the embedding layer
and each hidden layer, instead of approaching them inde-
pendently. Finally, numerical experiments show that using
PCA-based score matrices as the parameter initialization

strategy yields improved results. This approach accelerates
the retraining process with an insignificant loss of accuracy.
In conclusion, in this study, we present various interesting
topics for future research. First, our proposed PCA-based
method only considers the weight matrix, e.g., W , whereas
the layer response is not used effectively. This attribute
makes our proposed method less sensitive to the data. This
should be an interesting topic for future research. Second,
many state-of-the-art methods have been developed in the
field of RNN model compression. Future studies should in-
vestigate approaches for combining such methods to further
improve empirical performance. Finally, our proposed PCA-
based approach involves the tuning parameter, i.e., η, to be
learned for different models and datasets. This is a time-
consuming task. It would be of great interest to develop an
algorithm that can ensure the detection of the best tun-

404 H. Qi et al.



Figure 3. Left panel: prediction accuracy curves of RNN models using reduced PCA-based matrix initialization. Right panel:
prediction accuracy curves of RNN models using the he-normal initialization approach.

Figure 4. Left panel: prediction accuracy curves of LSTM models using reduced PCA-based matrix initialization. Right panel:
prediction accuracy curves of LSTM models using the he-normal initialization approach.

ing parameter. This is also a crucial direction for future
research.

ACKNOWLEDGEMENTS

This research was supported by the Fundamental Re-
search Funds for the Central Universities,and the Research
Funds of Renmin University of China, No.21XNA027.

Received 24 November 2021

REFERENCES

[1] Acharya, A., Goel, R., Metallinou, A. andDhillon, I. (2019).
Online embedding compression for text classification using low
rank matrix factorization. Proceedings of the AAAI Conference
on Artificial Intelligence 33 6196–6203.

[2] Aizenberg, I., Luchetta, A. and Manetti, S. (2012). A mod-
ified learning algorithm for the multilayer neural network with
multi-valued neurons based on the complex qr decomposition. Soft
Computing 16 563–575. MR3024805

[3] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak,

R. and Ives, Z. (2007). Dbpedia: A nucleus for a web of open
data. In The Semantic Web 722–735. Springer.

[4] Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate. In Comput-
ing Research Repository (CoRR).

[5] Bojar, O., Chatterjee, R., Federmann, C., Graham, Y.,

Haddow, B., Huang, S., Huck, M., Koehn, P., Liu, Q., Lo-

gacheva, V., Monz, C., Negri, M., Post, M., Rubino, R., Spe-

cia, L. and Turchi, M. (2017). Findings of the 2017 conference
on machine translation (wmt17). In Proceedings of the Second
Conference on Machine Translation 2 169–214. Association for
Computational Linguistics.

[6] Cho, K., Bart van Merrienboer, Gülçehre, C., Bahdanau,

D., Bougares, F., Schwenk, H. and Bengio, Y. (2014). Learn-
ing phrase representations using RNN Encoder–Decoder for sta-
tistical machine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing
(EMNLP) 1724–1734.

[7] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014). Em-
pirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

[8] Dai, X., Yin, H. and Jha, N. K. (2019). Grow and prune compact,
fast, and accurate lstms. IEEE Transactions on Computers 69

Compressing RNN models through PCA 405

http://www.ams.org/mathscinet-getitem?mr=3024805
http://arxiv.org/abs/1412.3555


Figure 5. Left panel: prediction accuracy curves of encoder–decoder-based models using reduced PCA-based matrix
initialization. Right panel: prediction accuracy curves of encoder–decoder-based models models using the he-normal

initialization approach.

441–452. MR4086683
[9] Deng, L., Li, G., Han, S., Shi, L. and Xie, Y. (2020). Model

compression and hardware acceleration for neural networks: A
comprehensive survey. In Proceedings of the IEEE 108 485–532.

[10] Denil, M., Shakibi, B., Dinh, L., Ranzato, M. A. and Fre-

itas, N. D. (2013). Predicting parameters in deep learning. arXiv
preprint arXiv:1306.0543.

[11] Devlin, J., Chang, M. W., Lee, K. and Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of NAACL-HLT 2019 4171–
4186.

[12] Geng, L. and Niu, B. (2020). Survey of deep neural networks
model compression. Journal of Frontiers of Computer Science
and Technology 14 1441–1455. MR3753802

[13] Gittens, A. and Mahoney, M. W. (2016). Revisiting the
nyström method for improved large-scale machine learning.
The Journal of Machine Learning Research 17 3977–4041.
MR3543523

[14] Grachev, A. M., Ignatov, D. I. and Savchenko, A. V. (2019).
Compression of recurrent neural networks for efficient language
modeling. Applied Soft Computing 79 354–362.

[15] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation 9 1735–1780.

[16] Hossain, E., Sharif, O., Hoque, M. and Sarker, I. (2020).
SentiLSTM: A deep learning approach for sentiment analysis of
restaurant reviews. In Proceedings of 20th International Confer-
ence on Hybrid Intelligent Systems.

[17] Jelinek, F. and Mercer, R. I. (1980). Interpolated estimation
of markov source parameters from sparse data. In Proceedings,
Workshop on Pattern Recognition in Practice.

[18] Yoon Kim (2014). Convolutional neural networks for sentence
classification. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) 1746–1751.

[19] Kingma, D. P. and Ba, J. L. (2015). Adam: a method for stochas-
tic optimization. In International Conference on Learning Rep-
resentations 1–13.

[20] Virginia Klema and Alan Laub (1980). The singular value
decomposition: Its computation and some applications. IEEE
Transactions on automatic control 25 164–176. MR0567374

[21] Kneser, R. and Ney, H. (1995). Improved backing-off for m-
gram language modeling. In 1995 International Conference on
Acoustics, Speech, and Signal Processing 1 181–184.

[22] Li, C. H. and Park, S. C. (2007). Neural network for text classifi-

cation based on singular value decomposition. In 7th IEEE Inter-
national Conference on Computer and Information Technology
(CIT 2007) 47–52. MR2321027

[23] Liu, Y., Yang, S., Wu, P., Li, C. and Yang, M. (2015). l1-norm
low-rank matrix decomposition by neural networks and mollifiers.
IEEE transactions on neural networks and learning systems 27
273–283. MR3463943

[24] Molchanov, P., Tyree, S., Karras, T., Aila, T. and Kautz,

J. (2015). Pruning convolutional neural networks for resource ef-
ficient inference. arXiv preprint arXiv:1611.06440.

[25] Prabhavalkar, R., Alsharif, O., Bruguier, A. and McGraw,

L. (2016). On the compression of recurrent neural networks with
an application to lvcsr acoustic modeling for embedded speech
recognition. In 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP) 5970–5974.

[26] Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E. and
Ramabhadran, B. (2013). Low-rank matrix factorization for deep
neural network training with high-dimensional output targets. In
2013 IEEE international conference on acoustics, speech and sig-
nal processing 6655–6659.

[27] Serban, I. V., Sordoni, A., Bengio, Y., Courville, A. and
Pineau, J. (2015). Building end-to-end dialogue systems using
generative hierarchical neural network models. AAAI Press.

[28] Thurau, C., Kersting, K. and Bauckhage, C. (2012). Deter-
ministic cur for improved large-scale data analysis: An empirical
study. In Proceedings of the 2012 SIAM International Conference
on Data Mining 684–695.

[29] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Di-
vide the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning 26–31.

[30] Jos Van Der Westhuizen and Joan Lasenby (2018). The
unreasonable effectiveness of the forget gate. arXiv preprint
arXiv:1804.04849.

[31] Wang, P., Xie, X., Deng, L., Li, G., Wang, D. and Xie, Y.

(2018). Hitnet: Hybrid ternary recurrent neural network. In Pro-
ceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems 602–612.

[32] Wu, Z. and King, S. (2016). Investigating gated recurrent net-
works for speech synthesis. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) 5140–
5144.

[33] Xu, C., Yao, J., Lin, Z., Ou, W., Cao, Y., Wang, Z. and Zha,

H. (2018). Alternating multi-bit quantization for recurrent neural

406 H. Qi et al.

http://www.ams.org/mathscinet-getitem?mr=4086683
http://arxiv.org/abs/1306.0543
http://www.ams.org/mathscinet-getitem?mr=3753802
http://www.ams.org/mathscinet-getitem?mr=3543523
http://www.ams.org/mathscinet-getitem?mr=0567374
http://www.ams.org/mathscinet-getitem?mr=2321027
http://www.ams.org/mathscinet-getitem?mr=3463943
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1804.04849


networks. arXiv preprint arXiv:1802.00150.
[34] Xue, j., Li, J., Yu, D., Seltzer, M. and Gong, Y. (2018). Sin-

gular value decomposition based low-footprint speaker adaptation
and personalization for deep neural network. In 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP) 6359–6363.

[35] Yang, P., Sun, X., Li, W., Ma, S., Wu, W. and Wang, H.

(2018). SGM: sequence generation model for multi-label classifi-
cation. In Proceedings of the 27th International Conference on
Computational Linguistics, COLING 3915–3926.

[36] Yu, M., Lin, Z., Narra, K., Li, S., Li, Y., Kim, N. S., Schwing,

A., Annavaram, M. and Avestimehr, S. (2018). Gradiveq: Vec-
tor quantization for bandwidth-efficient gradient aggregation in
distributed CNN training. arXiv preprint arXiv:1811.03617.

[37] Zhao, H., Lu, Z. and Poupart, P. (2015). Self-adaptive hierar-
chical sentence model. In Proceedings of International Joint Con-
ferences on Artificial Intelligence.

[38] Zhu, M., Clemons, J., Pool, J., Rhu, M., Keckler, S. W.

and Xie, Y. (2018). Structurally sparsified backward propaga-
tion for faster long short-term memory training. arXiv preprint
arXiv:1806.00512.

Haobo Qi
Guanghua School of Management
Peking University
China
E-mail address: qihaobo gsm@pku.edu.cn

Jingxuan Cao
Center for Applied Statistics
School of Statistics
Renmin University of China
China
E-mail address: caojx@ruc.edu.cn

Shichong Chen
Center for Applied Statistics
School of Statistics
Renmin University of China
China
E-mail address: csc789654123@163.com

Jing Zhou
Center for Applied Statistics
School of Statistics
Renmin University of China
China
E-mail address: jing.zhou@ruc.edu.cn

Compressing RNN models through PCA 407

http://arxiv.org/abs/1802.00150
http://arxiv.org/abs/1811.03617
http://arxiv.org/abs/1806.00512
mailto:qihaobo_gsm@pku.edu.cn
mailto:caojx@ruc.edu.cn
mailto:csc789654123@163.com
mailto:jing.zhou@ruc.edu.cn

	Introduction
	Related works
	Methodology
	Model compression via PCA
	PCA compression for text classification models
	PCA compression for language translation models

	Experiments
	Datasets
	RNN-based models
	Performance measures
	Implementation details

	Results
	Compression results for the text classification task
	Compression results for the language translation task

	Conclusions
	Acknowledgements
	References
	Authors' addresses

